簡易檢索 / 詳目顯示

研究生: 葉明霖
Ye, Ming-Lin
論文名稱: 利用行進表面聲波微流體晶片進行微粒子的表面塗層
Conformal coating of microparticles by utilization of traveling surface acoustic wave microfluidics
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 微流體表面聲波表面塗層聚二甲基矽氧烷電解質多層膜
外文關鍵詞: microfluidics, surface acoustic wave (SAW), polydimethyl siloxane(PDMS), lithium niobate, polyelectrolyte
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微粒子表面進行塗層或是表面改質,常常使用在醫藥科學、毒性檢測、化學與工程學當中。而目前微流體塗層或是表面改質的技術大多利用磁力或是或是慣性力讓粒子穿越多層的化學物質。利用磁力或是流體力學的方式往往需要對粒子本身進行一些前處理或是針對不同的粒子需要不同的流道設計,而這些前處理可能會破壞某些粒子特性,若通入粒子為細胞,這些處理可能直接殺死細胞。因此我們利用單邊指叉狀(interdigital transducer, IDT)電極在壓電材料上產生表面聲波(surface acoustic wave , SAW)的方式,讓聲波傳遞至流道內並且推動粒子橫跨多層流道,利用聲波的特性就不須對於粒子或細胞進行預先標記或是表面處理,也不會對微粒子有任何的汙染,可以使細胞在新鮮的狀態下進行表面塗層或是表面改質,這樣的方法幾乎適用於所有微粒子。
    本研究旨在探討如何利用聲波晶片使粒子在單一流道內進行橫向移動,以及找出最適合的操作參數,並嘗試在PS粒子表面塗層PAH帶正電高分子。初步的結果顯示,對於未修飾過的粒子,不同的帶電高分子濃度會影響電性的表現,但滯留時間的長短影響電性最為顯著;另外對於有修飾過的粒子,由於本身官能基的影響,在濃度不同以及滯留時間長短的影響下,電性測試的結果都比未修飾過粒子來的高且穩定。

    In this study, surface acoustic wave microchips were used to perform conformal coating of microparticles. The reusable chips were constructed where the PDMS channel was bonded to the thin glass slide and n-dodecane was used as a coupling layer between the glass slide and the lithium niobate substrate. The results showed that, for the fluorescent PS particles, the electric charge of the outer layer was affected by the concentration of the coating solution, and the residence time of the particles in the coating solution. It was also found that the residence time plays an important role in determining the electric charge. For the carboxylate conjugated particles, the zeta potential of the coated particles and their stability were higher than the coated fluorescent PS particles.

    中文摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1前言 1 1.2研究動機與方法 2 第二章 文獻回顧 3 2.1 表面聲波 3 2.1.1表面聲波的起源 3 2.1.2壓電材料 5 2.1.3表面聲波推動原理 9 2.1.4表面聲波的應用 16 2.2表面聲波的分類 20 2.3粒子表面塗層方法 25 第三章 實驗材料與方法 32 3.1實驗藥品與材料 32 3.2實驗儀器 37 3.3表面聲波元件之製作 47 3.3.1指叉狀電極的製作 47 3.3.2微流道複合裝置的製作 51 3.3.3聲波元件測試與頻率測試 56 3.4粒子表面電性測試 57 第四章 結果與討論 60 4.1可重複利用之SAW晶片 62 4.1.1聯結層厚度的影響 65 4.1.2電極與流道距離的影響 69 4.2粒子的塗層 71 4.2.1未含官能基的粒子 73 4.2.2含有羧基官能基的粒子 82 4.3蛇形彎曲流道 85 第五章 結論 94 第六章 未來工作與建議 95 第七章 參考文獻 96

    1. Shi, J., et al., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2009. 9(23): p. 3354-3359.
    2. Yosioka, K. and Y. Kawasima, Acoustic radiation pressure on a compressible sphere. Acta Acustica United with Acustica, 1955. 5(3): p. 167-173.
    3. Skowronek, V., et al., Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Analytical chemistry, 2013. 85(20): p. 9955-9959.
    4. Tsai, S.S., et al., Conformal coating of particles in microchannels by magnetic forcing. Applied Physics Letters, 2011. 99(15): p. 153509.
    5. Ayan, B., et al., Acoustofluidic coating of particles and cells. Lab on a Chip, 2016. 16(22): p. 4366-4372.
    6. Tsai, C.-H., et al., Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems. Journal of Micromechanics and Microengineering, 2004. 15(2): p. 377.
    7. Shi, J., et al. Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels. in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. 2008. IEEE.
    8. Li, H., J.R. Friend, and L.Y. Yeo, A scaffold cell seeding method driven by surface acoustic waves. Biomaterials, 2007. 28(28): p. 4098-4104.
    9. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proceedings of the London mathematical Society, 1885. 1(1): p. 4-11.
    10. Olivadoti, G., Sensing, analyzing, and acting in the first moments of an earthquake. Analog Dialogue, 2001. 35(1): p. 1-3.
    11. White, R. and F. Voltmer, Direct piezoelectric coupling to surface elastic waves. Applied physics letters, 1965. 7(12): p. 314-316.
    12. Matthias, B. and J. Remeika, Ferroelectricity in the ilmenite structure. Physical Review, 1949. 76(12): p. 1886.
    13. King, L.V., On the acoustic radiation pressure on spheres. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1934. 147(861): p. 212-240.
    14. Destgeer, G., et al., Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab on a Chip, 2013. 13(21): p. 4210-4216.
    15. Shi, J., et al., Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2011. 11(14): p. 2319-2324.
    16. Kerbel, S. Design of harmonic surface acoustic wave (SAW) oscillators without external filtering and new data on the temperature coefficient of quartz. in 1974 Ultrasonic Symposium Proceedings. 1974.
    17. Saiki, T., K. Okada, and Y. Utsumi, Highly efficient liquid flow actuator operated by surface acoustic waves. Electronics and Communications in Japan, 2011. 94(10): p. 10-16.
    18. Jung, J.H., et al., On-demand droplet splitting using surface acoustic waves. Lab on a Chip, 2016. 16(17): p. 3235-3243.
    19. Destgeer, G., et al., Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on a Chip, 2016. 16(4): p. 660-667.
    20. Skowronek, V., R.W. Rambach, and T. Franke, Surface acoustic wave controlled integrated band-pass filter. Microfluidics and Nanofluidics, 2015. 19(2): p. 335-341.
    21. Ang, K.M., et al., Nozzleless spray cooling using surface acoustic waves. Journal of Aerosol Science, 2015. 79: p. 48-60.
    22. Liu, S., et al., Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors, 2017. 17(7): p. 1664.
    23. Wiklund, M., R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on a Chip, 2012. 12(14): p. 2438-2451.
    24. Mahon, S. and R. Aigner. Bulk acoustic wave devices–why, how, and where they are going. in CS Mantech Conference. 2007.
    25. Löbl, H., et al., Materials for bulk acoustic wave (BAW) resonators and filters. Journal of the European Ceramic Society, 2001. 21(15): p. 2633-2640.
    26. Shi, J., et al., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 2008. 8(2): p. 221-223.
    27. Devendran, C., et al., Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC advances, 2016. 6(7): p. 5856-5864.
    28. Fakhfouri, A., et al., Surface acoustic wave diffraction driven mechanisms in microfluidic systems. Lab on a Chip, 2018. 18(15): p. 2214-2224.
    29. Jaffrezic-Renault, N., et al., Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors, 2007. 7(4): p. 589-614.
    30. Langer, R., Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Accounts of Chemical Research, 2000. 33(2): p. 94-101.
    31. García-Alonso, J., et al., Microscreening toxicity system based on living magnetic yeast and gradient chips. Analytical and bioanalytical chemistry, 2011. 400(4): p. 1009-1013.
    32. Moon, B.-U., et al., Microfluidic conformal coating of non-spherical magnetic particles. Biomicrofluidics, 2014. 8(5): p. 052103.
    33. Yamada, M., et al., Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab on a Chip, 2008. 8(5): p. 772-778.
    34. Kantak, C., et al., A ‘microfluidic pinball’for on-chip generation of layer-by-layer polyelectrolyte microcapsules. Lab on a Chip, 2011. 11(6): p. 1030-1035.
    35. Kaszuba, M., et al., High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1927): p. 4439-4451.
    36. Nimesh, S., R. Chandra, and N. Gupta, Advances in nanomedicine for the delivery of therapeutic nucleic acids. 2017: Woodhead Publishing.
    37. 廖廷瑋, 探討聯結層之作用於可重複使用之聲波微流體晶片. 成功大學化學工程學系學位論文, 2018: p. 1-97.
    38. Guo, F., et al., Reusable acoustic tweezers for disposable devices. Lab on a Chip, 2015. 15(24): p. 4517-4523.
    39. Park, J., et al., Aggregation processes of a weak polyelectrolyte, poly (allylamine) hydrochloride. Bulletin-Korean Chemical Society, 2008. 29(1): p. 104.
    40. Griffiths, S.K. and R.H. Nilson, Low-dispersion turns and junctions for microchannel systems. Analytical chemistry, 2001. 73(2): p. 272-278.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE