簡易檢索 / 詳目顯示

研究生: 林耿賢
Lin, Keng-Hsien
論文名稱: 微藻生產生質燃料程序之經濟評估與生命週期分析
Economic Evaluation and Life Cycle Analysis of Microalgae-to-Biofuel Systems
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 生質柴油生質酒精經濟評估生命週期評估
外文關鍵詞: Microalgae biofuel system, Life cycle assessment, Economic Evaluation
相關次數: 點閱:131下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微藻具有高二氧化碳吸收率、生長速率與光能利用率,因此普遍應用於生產生質能源。本論文建立以微藻油脂為原物料的生質柴油製程,以及用微藻中的碳水化合物進行發酵作用產生的生質酒精製程,生產大規模的生質燃料。本研究的第一部分是利用Aspen Plus軟體及靈敏度分析找出最適合的蒸餾塔操作條件。第二部分為製程的經濟分析,微藻培養經濟模式採用Benemann與Oswald(1996年)的方法,生質燃料製程部分採用J.M. Douglas(1988年)年出版的化工程序設計書目中的係數估計法,進行經濟可行性評估,計算製程投資報酬率,且分析設備成本、操作成本與營收變動所造成的影響,結果顯示製程投資報酬率(ROI)為43.5%、內部報酬率(IRR)為29.21%。第三部分為製程生命週期評估,探討製程中等量溫室氣體(eCO2)排放量,功能單位採用每單位能量生質燃料(MJ biofuel),結果顯示,生質柴油溫室氣體排放(Greenhouse gas emission)為0.04717 kg eCO2/MJ、生質酒精為0.403kg eCO2/MJ,前者低於文獻中其他原物料溫室氣體排放值,顯示微藻作為生質燃料替代能源原物料具有很大的潛力。

    Microalgae is recently a potential and desirable species for producing renewable fuel due to its high growth rate and carbon sequestration efficiency. In this research, Aspen Plus® software is used to simulate the biodiesel process with transesterification reaction and biodiesel process with fermentation reaction. The raw materials of the transesterification reaction and fermentation reaction are microalgae oil and carbohydrate, respectively. The optimized distillation column design is based on the sensitivity analyses to find the number of stages, feed stage, and reflux ratio. In the extractive distillation method using Ethylene glycol, glycerol acted as the entrainer can increase the concentration of azeotrope ethanol to 99.5 wt%. The best entrainer molar composition is found at 0.38 EG and 0.62 glycerol. Economic evaluation of the total system is then carried out by factor estimation which the relative error is less than 30 %. Return of investment (ROI) is 43.5 % and internal rate of return (IRR) is 29.21 % in this research, profitability from both of them are greater than other investment. Finally, life cycle assessment range from well to tank (WTT) is 0.04717 kg e-CO2/MJ in biodiesel and 0.403 kg e-CO2/MJ in bioethanol.

    摘要 I Extended Abstract II 誌謝 X 目錄 XII 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目標 3 1.3 研究架構 3 第二章 文獻回顧 5 2.1 微藻簡介 5 2.1.1養殖程序 5 2.1.2收穫程序 5 2.1.3除水程序 6 2.1.4破藻程序 6 2.1.5油脂萃取程序 6 2.2 生質柴油簡介 9 2.2.1油脂前處理 10 2.2.2醇類/催化劑結合 10 2.2.3轉酯化反應 11 2.2.4 蒸餾程序 11 2.3 生質酒精簡介 12 2.3.1 水解與糖化作用 12 2.3.2 發酵反應 13 2.3.3 萃取蒸餾程序 14 2.4 經濟評估簡介 16 2.4.1設備成本 16 2.4.2操作成本 17 2.4.3折舊 18 2.4.4 獲利分析 21 2.5 生命週期評估簡介 23 2.5.1生命週期評估簡介 23 2.5.2目標範疇界定(goal and scope definition) 23 2.5.3 盤查分析(life cycle inventory) 23 2.5.4 衝擊評估(life cycle impact assessment) 24 2.5.5 闡釋(life cycle interpretation) 24 第三章 製程建立 25 3.1轉酯化製程建立 25 3.1.1物理性質 25 3.1.2 轉酯化反應器(R-101) 27 3.1.3甲醇回收蒸餾塔(T-101) 28 3.1.4 甘油回收蒸餾塔(T-104) 30 3.1.5 觸媒中和反應器(R-102) 31 3.2 發酵製程建立 33 3.2.1 物理性質 35 3.2.2 發酵反應器(R-201) 35 3.2.3 前處理蒸餾塔(T-202) 37 3.2.4 萃取蒸餾塔(T-203) 38 3.2.5 共沸劑回收塔(T-204) 41 3.3 微藻養殖程序建立 43 3.4 經濟評估模式 45 3.4.1 微藻養殖經濟模式 45 3.4.2 生質燃料製程經濟模式 47 第四章 製程、經濟與生命週期分析 51 4.1製程分析 51 4.1.1 轉酯化靈敏度分析 51 4.1.2 轉酯化製程熱整合 54 4.1.3 發酵製程 59 4.2 經濟分析 61 4.2.1 經濟模型驗證 65 4.2.2 獲利分析 67 4.2.3 經濟靈敏度分析 69 4.3 生命週期分析 71 4.3.1 微藻培養LCA 72 4.3.2 生質柴油LCA 75 4.3.3 生質酒精LCA 77 4.4 程序最適化 78 第五章 結論與建議 82 參考文獻 84 附錄(A) 最適化流程 90 附錄(B) 製程等量二氧化碳排放 95 附錄(C) 製程公用設施與原物料年成本 97

    [1] 吳耿東 and 李宏台, "全球生質能源應用現況與未來展望," 林業研究專訊, vol. 14, no. 3, pp. 5-9, 2007.
    [2] R. A. Voloshin, M. V. Rodionova, S. K. Zharmulzhamedou, T. N. Veziroglu, and S. I. Allakhverdiev, "Review: Biofuel production from plant and algal biomass," (in English), International Journal of Hydrogen Energy, vol. 41, no. 39, pp. 17257-17273, Oct 19 2016.
    [3] 謝誌鴻 and 吳文騰, "微藻—綠色生質能源," 科學發展, 第四三三期, 第 36-40 頁, 2009.
    [4] 陳俊延, 沈玉玫, and 張嘉修, "藻類高價產品之開發與應用," 國立成功大學校刊第 250 期, 2015.
    [5] A. R. Sirajunnisa and D. Surendhiran, "Algae–A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and sustainable energy reviews, vol. 66, pp. 248-267, 2016.
    [6] L. Brennan and P. Owende, "Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products," (in English), Renewable & Sustainable Energy Reviews, vol. 14, no. 2, pp. 557-577, Feb 2010.
    [7] O. Jorquera, A. Kiperstok, E. A. Sales, M. Embirucu, and M. L. Ghirardi, "Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors," (in English), Bioresource Technology, vol. 101, no. 4, pp. 1406-1413, Feb 2010.
    [8] M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, "Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock," (in English), Bioresource Technology, vol. 153, pp. 108-115, Feb 2014.
    [9] J. R. McMillan, I. A. Watson, M. Ali, and W. Jaafar, "Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment," (in English), Applied Energy, vol. 103, pp. 128-134, Mar 2013.
    [10] M. K. Lam and K. T. Lee, "Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production," (in English), Chemical Engineering Journal, vol. 191, pp. 263-268, May 15 2012.
    [11] 謝主豊, "工業級蒸餾塔的設計、控制與經濟分析," 碩士, 化學工程學系, 國立成功大學, 台南市, 2017.
    [12] Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20).
    [13] A. Srivastava and R. Prasad, "Triglycerides-based diesel fuels," Renewable and sustainable energy reviews, vol. 4, no. 2, pp. 111-133, 2000.
    [14] 謝志誠, "生質柴油之技術與文獻探討," ed: 分享與跨越門檻與障礙, 2007.
    [15] M. J. Nye et al., "Conversion of Used Frying Oil to Diesel Fuel by Trans-Esterification - Preliminary Tests," (in English), Journal of the American Oil Chemists Society, vol. 60, no. 8, pp. 1598-1601, 1983.
    [16] B. Freedman, E. H. Pryde, and T. L. Mounts, "Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable-Oils," (in English), Journal of the American Oil Chemists Society, vol. 61, no. 10, pp. 1638-1643, 1984.
    [17] 台灣化學工程學會, "生質煉油廠-替代燃料與石化品-技術整合研討會," 2011.
    [18] M. Balat and H. Balat, "Recent trends in global production and utilization of bio-ethanol fuel," Applied energy, vol. 86, no. 11, pp. 2273-2282, 2009.
    [19] W. Coyle, "The future of biofuels: a global perspective," Amber Waves, vol. 5, no. 5, p. 24, 2007.
    [20] M. Martin and I. E. Grossmann, "Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel," AIChE Journal, vol. 59, no. 8, pp. 2872-2883, 2013.
    [21] R. Raghav, H. Sivaraman, D. V. Gokhale, and B. S. Rao, "Ethanolic Fermentation of Cane Molasses by a Highly Flocculant Yeast," (in English), Biotechnology Letters, vol. 11, no. 10, pp. 739-744, Oct 1989.
    [22] P. Godard et al., "Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae," Molecular and cellular biology, vol. 27, no. 8, pp. 3065-3086, 2007.
    [23] A. Meirelles, S. Weiss, and H. Herfurth, "Ethanol Dehydration by Extractive Distillation," (in English), Journal of Chemical Technology and Biotechnology, vol. 53, no. 2, pp. 181-188, 1992.
    [24] S. Kumar, N. Singh, and R. Prasad, "Anhydrous ethanol: A renewable source of energy," (in English), Renewable & Sustainable Energy Reviews, vol. 14, no. 7, pp. 1830-1844, Sep 2010.
    [25] I. D. Gil, L. C. Garcia, and G. Rodriguez, "Simulation of Ethanol Extractive Distillation with Mixed Glycols as Separating Agent," (in English), Brazilian Journal of Chemical Engineering, vol. 31, no. 1, pp. 259-270, Jan-Mar 2014.
    [26] A.-M. Cormos and C.-C. Cormos, "Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions," International Journal of Hydrogen Energy, vol. 42, no. 12, pp. 7798-7810, 2017.
    [27] R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008.
    [28] "Marshall and Swift, "Marshall and Swift Equipment Cost Index."
    [29] D. Lozowski, "Chemical engineering plant cost index (CEPCI)," Chem Eng, vol. 119, p. 84, 2012.
    [30] "How to depreciate property," American department of treasury, vol. 946, 2016. Department of the Treasury,Internal Revenue Service
    [31] A. T. Leland Blank, Basics of Engineering Economic (工程經濟概論). 2009.
    [32] 盧怡靜、呂穎彬, "ISO 14040生命週期評估的下一步," 永續產業發展季刊, 2014.
    [33] 丁執宇, "衝擊評估方法介紹及如何應用在產業界," 生命週期評估研討會, 經濟部與工業技術研究院, 1998.
    [34] 汪柏翰, "微藻能源系統設計與優化," 碩士, 化學工程學系, 國立成功大學, 台南市, 2016.
    [35] G. Vicente, M. Martinez, and J. Aracil, "Kinetics of Brassica carinata oil methanolysis," (in English), Energy & Fuels, vol. 20, no. 4, pp. 1722-1726, Jul 19 2006.
    [36] E. L. Gaden, "Fermentation process kinetics," Biotechnology and bioengineering, vol. 67, no. 6, pp. 629-635, 2000.
    [37] J. P. Yailet Albernas-Carvajal, Erenio Gonzalez, "Simulation of the batch fermentation stage in the process to obtain ethanol from final molasses," Chemical Engineering Transaction, vol. 21, pp. 931-936, 2010.
    [38] J. R. Benemann and W. J. Oswald, "Systems and economic analysis of microalgae ponds for conversion of CO {sub 2} to biomass. Final report," California Univ., Berkeley, CA (United States). Dept. of Civil Engineering1996.
    [39] J. M. Douglas, Conceptual design of chemical processes. McGraw-Hill Science/Engineering/Math, 1988.
    [40] J. Zhai, Y. L. Liu, L. M. Li, Y. Zhu, W. Zhong, and L. Y. Sun, "Applications of dividing wall column technology to industrial-scale cumene production," (in English), Chemical Engineering Research & Design, vol. 102, pp. 138-149, Oct 2015.
    [41] W. Alkhayat and A. Gerrard, "Estimating manning levels for process plants," AACE Transactions, I, 1984.
    [42] Y. Zhang, M. A. Dube, D. D. McLean, and M. Kates, "Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis," (in English), Bioresource Technology, vol. 90, no. 3, pp. 229-240, Dec 2003.
    [43] B. L. Maiorella, H. W. Blanch, and C. R. Wilke, "Economic evaluation of alternative ethanol fermentation processes Biotechnology and Bioengineering Volume 26, Issue 9," Biotechnology and Bioengineering, vol. 26, no. 9, pp. 1003-1025
    [44] 林志生, "國家能源計劃-子計畫四:結合廢水和廢氣利用於微藻固碳養殖及高值化動物飼料添加劑的開發," 2017.
    [45] L. Rodolfi et al., "Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor," Biotechnology and bioengineering, vol. 102, no. 1, pp. 100-112, 2009.
    [46] K. Sudhakar, M. Premalatha, and K. Sudharshan, "Energy balance and exergy analysis of large scale algal biomass production," in The 2 nd Korea-Indonesia Workshop & International Symposium on Bioenergy from Biomass, 2012.
    [47] A. F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi, "Environmental life cycle comparison of algae to other bioenergy feedstocks," Environmental science & technology, vol. 44, no. 5, pp. 1813-1819, 2010.
    [48] A. Miller, "Energy implications of the transportation of building materials," Proceedings of Materials and Technologies for Sustainable Construction, Gävle, Sweden, pp. 803-810, 1998.
    [49] H. G. C. Authority, "Carbon Life Cycle Calculation for Biodiesel," Report elaborated in the framework of the Carbon Labelling Project (Deliverable D3), 2008.
    [50] D. H. Clark, What Colour is Your Building?: Measuring and Reducing the Energy Anda Carbon Footprint of Buildings. Royal Institute of British Architects 2013.
    [51] T. Numjuncharoen, S. Papong, P. Malakul, and T. Mungcharoen, "Life-cycle GHG emissions of cassava-based bioethanol production," Energy Procedia, vol. 79, pp. 265-271, 2015.

    下載圖示 校內:2020-07-13公開
    校外:2020-07-13公開
    QR CODE