| 研究生: |
許家銘 Hsu, Chia-Ming |
|---|---|
| 論文名稱: |
利用模糊QFD與模糊FMEA於新產品開發之研究–以車用面板為例 Using Fuzzy QFD and Fuzzy FMEA in New Product Development – A Case Study of Automobile Panel |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 新產品開發 、品質機能展開 、失效模式與效應分析 、模糊理論 |
| 外文關鍵詞: | New product development, QFD, FMEA, Fuzzy sets theory |
| 相關次數: | 點閱:104 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技不斷的發展與演進,在適應市場的變化與競爭趨勢下,唯有持續開發新產品,才能讓企業永續發展與生存。在新產品開發的過程中,除了追求高品質、低成本、縮短產品開發週期、提升產品功能與技術等,如何清楚掌握顧客需求,提供可滿足客戶需求的新產品,更是現今各企業的重要議題。本研究將探討車用面板產業的新產品開發,近年來在電動車與智慧車輛的市場趨勢帶動下,促使車用面板顯示器的需求大增,而車用面板的開發週期約需2至3年,且在汽車行駛中有安全性的考量,故在規格與可靠度測試上相對於其他傳統面板,其要求條件與限制更高,因此考量到其開發過程中存在著潛在風險失效因子,將整合失效模式與效應分析(Failure Mode and Effect Analysis, FMEA)與品質機能展開(Quality Function Deployment, QFD)兩項新產品開發工具,同時考慮過程中的主觀判斷與不確定性因素,應用模糊理論概念,建立一套QFD的三階段展開模式,來掌握其關鍵設計與製程的重要性因子,並以一模糊決策模式,透過考慮成本、技術困難度與風險因子限制,來規劃求解各決策變數之執行度,以達整體顧客滿意度之最大化目標。最後將以個案公司的車用面板新產品開發為例,來驗證本研究方法之可行性與實用性。
In order to adapt to the market changes and competitive trends, along with the continuous development and evolution of science and technology, the enterprises could only develop and survive sustainably by continuously developing new products. In the process of development of new products, besides pursuing high quality, low cost, reducing product development cycle time, elevating product functions and technologies, how to clearly grasp the customer’s requirement and provide new products that could meet the customer’s requirement is also an important issue for the companies in recent years. Thus, this study discussed the development of new products in the automotive panel industry. Nowadays, under the market trend of electric vehicles and smart vehicles, the demand for automotive panel displays has greatly increased, due to the reasons that the development cycle of automotive panel would take about 2 to 3 years, there are sufficient safety considerations in car driving, and compared with the other traditional panels, the requirements and restrictions are higher in the specification and reliability test. However, by considering the potential risk failure factors in the development process, the two new product development tools, namely Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD), were integrated in this study. Also, by considering the subjective judgments and uncertainties in the process and the application of the concepts of fuzzy theory, we established a three-stage deployment model of QFD to grasp the importance factors of its key design and process, and also used a fuzzy decision model to plan and solve the execution of each decision variable by taking into account the cost, technical difficulty and risk factor restrict, in order to achieve the goal of maximizing the overall customer’s satisfaction. Finally, we took the company case of the development of new product for automotive panels as an example to verify the feasibility and practicability of this research method.
(一) 中文部分
吳順傑 (2012),結合F-QFD、F-FMEA與TRIZ方法建構產品開發模式-以光電觸控面板網印製程開發為例,國立勤益科技大學研發科技與資訊管理系碩士論文。
呂偉榮 (2018),應用品質機能展開探討汽車零組件產業導入工業4.0之研究-以F公司為例,國立高雄大學亞太工商管理學系碩士論文。
邢乃平 (2013),應用KANO二維品質模式與QFD品質機能展開法探討公營住宅設計策略,國立台灣科技大學設計學院建築學系碩士論文。
林佑蒨 (2018),利用QFD與FMEA降低會展流程失效風險,國立高雄大學亞太管理學系碩士論文。
紀曉菁 (2013),運用失效模式分析與同步工程策略於輔具研發設計,國立成功大學工業設計學系碩士論文。
張燦明、吳英偉、何境峰、江瑞坤 (2004),「製程FMEA」在汽車零件製造的實證研究,修平學報,第九期,137∼156頁。
黃雅君 (2015),考慮顧客需求缺口之模糊品質機能展開模式,國立成功大學工業與資訊管理學系碩士論文。
盧昆宏 和 施同一 (2014),整合專利迴避、QFD與TRIZ於新產品設計之研究,管理資訊計算期刊,第三卷,241~251頁。
顏士傑 (2015),以層級分析法評估新產品開發之優先順序-以A公司為例,國立台灣科技大學工業管理系碩士論文。
蘇朝墩 (2003),「專訪QFD發明人-品質大師赤尾洋二」,品質月刊,第三十九卷,第十一期,17~19頁。
(二) 英文部分
Akao, Y., (1997), QFD: past, present, and future, International Symposium on QFD, Linkoping.
Beverland, M. B., Micheli, P. and Farrelly, F. J., (2016), Resourceful sensemaking Overcoming barriers between marketing and design in NPD, Journal of Product Innovation Management, Vol.33(5), 628-648.
Booz, Allen and Hamilton, (1982), New Product Management for the 1980's, New York: Booz Allen and Hamilton, Inc.
Chan, L. K. and Wu, M. L., (2002), Quality function deployment: a comprehensive review of its concepts and methods, Quality Engineering, Vol.15(1), 23–35.
Chan, L. K. and Wu, M. L., (2002), Quality function deployment: a literature review, European Journal of Operational Research, Vol.143, 463–497.
Chen, L. H. and Chen, C. N., (2014), Normalisation models for prioritising design requirements for quality function deployment processes, International Journal of Production Research, 52(2), 299-313.
Chen, L. H. and Ko, W. C., (2009), Fuzzy linear programming models for new product design using QFD with FMEA, Applied Mathematical Modelling, 33, 633-647.
Chen, L. H. and Weng, M. C., (2003), A fuzzy model for exploiting quality function deployment, Mathematical and Computer Modelling, 38, 559-570.
Cooper, R. G. and Kleinschmidt, E. J., (2007), Winning businesses in product development: the critical success factors, Research-Technology Management, 50(3), 52-66.
Cooper, R. G., (1983), A process model for industrial new product development, IEEE Transactions on Engineering Management, Vol.1, 2-11.
Floren, H., Frishammar, J., Parida, V. and Wincent, J., (2018), Critical success factors in early new product development: a review and a conceptual model, International Entrepreneurship and Management Journal, Vol.14(2), 411-427.
Griffin, A. and Hauser, J. R., (1993), The voice of the customer, Marketing Science, Vo1.12(1), 1-27.
Hauser, J. R. and Clausing, D., (1988), The house of quality, Harvard Business Review,
Vo1.66, 66-73.
Kirkire, M. S., Rane, S. B. and Jadhav, J. R., (2015), Risk management in medical product development process using traditional FMEA and fuzzy linguistic approach: a case study, Journal of Industrial Engineering International, Vol.11(4), 595-611.
Kleinschmidt, E. J. and Cooper, R. G., (1991), The impact of product innovativeness
on performance, Journal of Product Innovation Management, Vo1.8, 240-251.
Klir, G. J. and Yuan, B., (1995), Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice Hall PTR, New Jersey.
Lyman, D., (1990), Deployment normalization, In Transactions from the Second Symposium on Quality Function Deployment, 307-315.
Morris, M., (2011), Failure mode and effects analysis based on FMEA 4th edition,
ASQ Automotive Division Webinar.
Pramanik, D., Haldar, A., Mondal, S. C., Naskar, S. K. and Ray, A., (2017), Resilient
supplier selection using AHP-TOPSIS-QFD under a fuzzy environment, International Journal of Management Science and Engineering Management, Vol.12(1), 45-54.
ReVelle, J, B., Moran, J. W. and Cox, C. A., (1998), The QFD Handbook, John Wiley
& Sons, 13-20.
Sivaloganathan, S., Evbuomwan, N. F. O., Jebb, A. and Wynn, H. P., (1995), Design function deployment - a design system for the future, Design Studies, Vo1.16, 447-470.
Souder, W. E., (1988), Managing relations between R&D and marketing in new product development projects, Journal of Product Innovation Management, Vo1.5, 6-19.
Stamatis, D. H., (2003), Failure Mode and Effect Analysis - FMEA from Theory to Execution, Second Edition, ASQ Quality Press, Wisconsin.
Trott, P., (2017), Innovation Management and New Product Development, Sixth Edition, Pearson Education.
Wasserman, G. S., (1993), On how to prioritize design requirements during the QFD planning process, IIE Transactions, 25(3), 59-65.
Zadeh, L. A., (1965), Fuzzy Sets, Information and Control, Vol.8, 338-353.
Zimmermann, H. J., (2001), Fuzzy Set Theory and Its Applications, Fourth Edition, Springer Science+Business Media, New York.