簡易檢索 / 詳目顯示

研究生: 黃士桓
Huang, Shih-Huan
論文名稱: 基於智慧型手機發展影像輔助室內定位及影像辨識技術
The Development of Image-based Indoor Positioning and Image Recognition Technologies Using Smartphones
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 88
中文關鍵詞: 室內定位智慧型手機影像定位影像辨識類神經網路
外文關鍵詞: Indoor positioning, Smartphone, Image-based positioning, Image recognition, Artificial Neural Networks
相關次數: 點閱:103下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,適地性服務(Lacation Based Service, LBS)之興起,定位及導航已成為實踐智慧城市不可或缺的技術,目前最常見之定位技術為全球導航衛星系統(Global Navigation Satellite System, GNSS)與慣性導航系統(Inertial Navigation System, INS),此技術已廣泛運用於室外定位。然而,室內定位之於室外定位是相對困難的,歸因於其衛星訊號易受到遮蔽而失去定位能力,又慣性感測器之誤差會隨著時間增加而累積,因此,需要以外部之輔助資訊來進行定位。現今,智慧型手機皆內建了高解析度數位相機,因此,本研究以智慧型手機之影像感測器,透過光線幾何交會之原理應用於室內定位,此方法不但成本低廉,更能快速獲得高精度室內之絕對位置。
    影像辨識為影像定位不可或缺的一環,常見的方法為特徵定位與標誌定位。特徵定位 需要事先建立影像資料庫,並會增加計算量。因此,本研究以特製的定位標誌來進行室內定位,採用影像處理演算法辨識標誌上的二維條碼,當特定標誌被辨識出後,即可獲得其室內導航資訊,進而求解使用者之絕對位置。本研究所提出之演算法穩健性高,其辨識之有效距離大約6公尺,優於其他演算法之辨識距離。除此之外,該演算法除了能夠快速辨識外,亦適應於複雜之環境、能在未知環境中快速初始化。另一方面,本研究使用類神經網路(Artificial Neural Networks, ANN)進行位置估算,可使定位精度較傳統影像定位技術提升,其訓練模型亦可通用於不同場景,並符合室內定位精度之應用。

    With the development of wireless communication technology, Location Based Service (LBS) has been a popular issue in recent years. To achieve the concept of smart city, positioning and navigation technologies are indispensable. The most common positioning techniques are Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS), which are widely used in outdoor positioning. However, indoor positioning is more challenging due to the blocked satellite signal, which makes positioning disable in GNSS-hostile environment. Furthermore, the error of inertial sensors will accumulate with time. As a result, some external information is needed to realize indoor positioning. The research uses the smartphone camera and adopts the principle of light intersection to carry out indoor positioning. The proposed image-based positioning is not only low cost but also rapid to get the absolute position in indoor environment.
    The main technique in traditional image-based positioning is image recognition including feature-based and marker-based positioning. Image database should be established in advance and cause computational burden in feature-based positioning. Hence, the research adopts the marker-based positioning, which uses self-made markers to carry out indoor positioning. Once the specific marker is recognized, the user can obtain the indoor navigation information from the corresponding marker. The proposed algorithm for recognition has high robustness and its effective distance is about 6 meters for which is farther than other marker recognition methods. It can avoid the effect caused by the environment or provide other pedestrians initial position in an unknown indoor environment. On the other hand, the research adopts Artificial Neural Networks (ANNs) to estimate the user position. Compared with other image-based positioning techniques, it can reach higher accuracy. The model can be used in different scene and achieve the accuracy of indoor positioning application.

    Content 中文摘要 I Abstract II Acknowledgement IV Content V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background and Literature Review 1 1.2 Motivation and Objective 4 1.3 Thesis Outline 6 Chapter 2 Image-based Positioning 8 2.1 Coordinate System 8 2.1.1 Object Space Coordinate System 8 2.1.2 Image Coordinate System 10 2.1.3 Pixel Coordinate System 12 2.1.4 Sensor Coordinate System 13 2.2 Camera Calibration 14 2.3 Space Resection 16 2.3.1 Space Resection Using Smartphone 17 2.3.2 Precision Indexes and Geometry Analysis 18 Chapter 3 Image Recognition 21 3.1 Marker-Based Positioning 21 3.1.1 Marker Design 21 3.1.2 Flow Chart of Proposed Recognition Method 22 3.2 Image Segmentation 23 3.3 Edge Detection 24 3.4 Morphology 25 3.5 Vertices detection 26 3.6 Distortion correction 27 3.7 Positioning Algorithm 29 3.7.1 Distance Estimation 29 3.7.2 Position Estimation 30 Chapter 4 Artificial Neural Networks 32 4.1 Basic concept of ANN 33 4.1.1 Model of Neuron 33 4.1.2 Network Structure 35 4.1.3 Learning processes 37 4.2 Multi-Layer Feed-Forward Neural Networks 38 4.3 Cascade Correlation Networks 40 Chapter 5 Experiments and Analysis 45 5.1 The accuracy analysis of space resection 45 5.1.1 System description 45 5.1.2 Experimental Descriptions 46 5.1.3 The effect of depth of field 48 5.1.4 The effect of feature points geometry 50 5.1.5 The effect of quantity 56 5.1.6 Indoor Environment Test 60 5.2 The practical test of marker recognition 65 5.2.1 The effective distance of proposed method 65 5.2.2 The recognition rate of proposed method 66 5.2.3 The processing time of proposed method 67 5.3 The accuracy of ANN method 69 5.3.1 The accuracy of Distance estimation method 69 5.3.2 The experimental setup and architecture 70 5.3.3 Different structure of MFNNs 73 5.3.4 The adaptability in different smartphone 75 5.3.5 The incremental learning using CCNs 78 Chapter 6 Conclusions and Future Works 81 6.1 Conclusions 81 6.2 Future works 82 Reference 84

    Alpaydin, E. (1991). GAL: Networks that Grow When They Learn and Shrink When They Forget, International Computer Science Institute. Berkeley CA, Tech. Rep. TR91-032.
    Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1-83.
    Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.
    Carpenter, A. (2016). Carpenter's complete Guide to the SAS Macro language. SAS Institute.
    Chang, H. W. (2009). The Development of self-growing Neural Network Embedded POS Determination Scheme for MEMS INS/GPS Integrated Systems. MSc Thesis, Dept. of Geomatics, National Cheng Kung University, Tainan, Taiwan
    Chang, K. P. (2016). Indoor Positioning System using Near Real-time Radio Maps in Fingerprinting based on Bluetooth Low Energy. MSc Thesis. Dept. of Geomatics, National Cheng Kung University, Tainan, Taiwan
    Chen, K. Y. (2011). The Performance Evaluation of Low Cost IMU/GPS Integrated Positioning and Orientation Systems Using DBPNs Embedded Fusion Algorithms. MSc Thesis. Dept. of Geomatics, National Cheng Kung University, Tainan, Taiwan
    Chen, R. C., Lin, Y. C., & Lin, Y. S. (2011). Indoor position location based on cascade correlation networks. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on (pp. 2295-2300). IEEE.
    Chiang, K. W. (2004). INS/GPS integration using neural networks for land vehicular navigation applications (No. NR-04589 UMI). Phd Thesis. Dept. of Geomatics Engineering, University of Calgary, Calgary, Canada.
    Chiang, K. W., Tsai, M. L., Naser, E. S., Habib, A., & Chu, C. H. (2015). New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads. Sensors, 15(3), 6560-6585.
    Chiang, K. W., Liao, J. K., Huang, S. H., Chang, H. W., & Chu, C. H. (2017). The Performance Analysis of Space Resection-Aided Pedestrian Dead Reckoning for Smartphone Navigation in a Mapped Indoor Environment. ISPRS International Journal of Geo-Information, 6(2), 43.
    Duane, C. B. (1971). Close-range camera calibration. Photogramm. Eng, 37(8), 855-866.
    Efford, N. (2000). Digital image processing: a practical introduction using java (with CD-ROM). Addison-Wesley Longman Publishing Co., Inc.
    El-Rabbany, A., & Lymer, D. Datums (2001). Coordinate Systems and GPS.
    DENSO WAVE Inc. (1994). Retrieved from http://www.qrcode.com/zh/index.html
    Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture.
    Fraser, C. S. (1997). Digital camera self-calibration. ISPRS Journal of Photogrammetry and Remote sensing, 52(4), 149-159.
    Hadj-Abdelkader, H., Malis, E., & Rives, P. (2008). Spherical image processing for accurate visual odometry with omnidirectional cameras. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras-OMNIVIS.
    Haykin, S. (2004). A comprehensive foundation. Neural Networks, 2(2004), 41.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J., (1997). Global positioning system: Theory and practice.
    Huang, S. H., Liao, J. K., Chiang, K. W., Chang, H. W. & Duong, T. T. (2015). Development of Vision Aiding Pedestrian Dead Reckoning with Smartphone for Indoor Navigation. Proceedings of the International Symposium on Mobile Mapping Technology.
    Farid, Z., Nordin, R., Ismail, M., & Abdullah, N. F. (2016). Hybrid indoor-based WLAN-WSN localization scheme for improving accuracy based on artificial neural network. Mobile Information Systems, 2016.
    Grafarend, E. W., Mueller, I. I., Papo, H. B., & Richter, B. (1979). Concepts for reference frames in geodesy and geodynamics: the reference directions. Bulletin Géodésique, 53(3), 195-213.
    Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech house.
    Joly, C., & Rives, P. (2011). Self Calibration of a vision system embedded in a Visual SLAM framework. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3320-3326). IEEE.
    Kim, G., & Petriu, E. M. (2010). Fiducial marker indoor localization with artificial neural network. In Advanced intelligent mechatronics (AIM), 2010 IEEE/ASME international conference on (pp. 961-966). IEEE.
    Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480.
    Liao, J. K., Tsai, G. J. (2017.) Networks Aided Image Localization Scheme for Indoor Navigation Applications with Floor Plans Built by Multi-platform Mobile Mapping Systems. Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation.
    Li, C. H., Chuang, K. W., Liao, J. K., Chu, C. H., & Tsai, G. J. (2015). U.S. Patent Application No. 14/611,182.
    Littmann, E., & Ritter, H. (1993). Generalization abilities of cascade network architecture. Advances in neural information processing systems, 188-188.
    Li, X., Wang, J., & Li, T. (2013). Seamless positioning and navigation by using Geo-referenced images and multi-sensor data. Sensors, 13(7), 9047-9069.
    Mautz, R. (2012). Indoor positioning technologies. Habilitation Thesis. Institute of Geodesy and Photogrammetry, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Medsker, L. R., & Jain, L. C. (2001). Recurrent neural networks. Design and Applications.
    Mokbel, M. F., Chow, C. Y., & Aref, W. G. (2006). The new casper: Query processing for location services without compromising privacy. In Proceedings of the 32nd international conference on Very large data bases (pp. 763-774). VLDB Endowment.
    Moreno-Cano, M. V., Zamora-Izquierdo, M. A., Santa, J., & Skarmeta, A. F. (2013). An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings. Neurocomputing, 122, 116-125.
    Potter, M. A. (1992, June). A genetic cascade-correlation learning algorithm. In Combinations of Genetic Algorithms and Neural Networks, 1992., COGANN-92. International Workshop on (pp. 123-133). IEEE.
    Sahoo, P. K., Soltani, S. A. K. C., & Wong, A. K. (1988). A survey of thresholding techniques. Computer vision, graphics, and image processing, 41(2), 233-260.
    Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
    Uhr, L., & Honavar, V. (Eds.). (1994). Artificial intelligence and neural networks: steps toward principled integration. Academic press.
    Pedley, M. (2013). Tilt sensing using a three-axis accelerometer. Freescale semiconductor application note, 1-22.
    Werner, M., Kessel, M., & Marouane, C. (2011). Indoor positioning using smartphone camera. In Indoor Positioning and Indoor Navigation (IPIN), 2011 International Conference on (pp. 1-6). IEEE.
    Wolf, P. R., & Dewitt, B. A. (2000). Elements of photogrammetry: with applications in GIS (Vol. 3). New York: McGraw-Hill.
    Yarlagadda, R., Ali, I., Al-Dhahir, N., & Hershey, J. (2000). Gps gdop metric. IEE Proceedings-radar, sonar and navigation, 147(5), 259-264.
    Zhang J. Y., Chen, Y., & Huang X. X. (2009). Edge detection of images based on improved Sobel operator and genetic algorithms. In Image Analysis and Signal Processing, 2009. IASP 2009. International Conference on (pp. 31-35). IEEE.

    下載圖示 校內:2022-06-28公開
    校外:2022-06-28公開
    QR CODE