| 研究生: |
夏惠萍 Hsia, Hui-Ping |
|---|---|
| 論文名稱: |
光電廢水生物除氮程序模型場功能評估與微生物指標建立 Performance Evaluation and Microbial Indicator for a Pilot-scale Bioprocess Treating Photonics Wastewater |
| 指導教授: |
鄭幸雄
Cheng, Shian-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | TFT-LCD廢水 、AO程序 、操作參數 、氨氧化菌 、脫硝菌 |
| 外文關鍵詞: | TFT-LCD wastewater, AO process, operating parameters, ammonia oxidizer(AOB), denitrifier |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以模型場規模兩段式AO程序處理含高濃度有機氮之光電廢水,主要針對硝化與脫硝功能提升之策略分別進行探討,並且與模型廠之操作參數及功能指標進行評估,同時結合分子生物方法探討光電廢水處理系統中微生物之族群變化。
在此模型場規模中缺氧脫硝槽體積為2.4 m3,好氧硝化槽為三槽串聯,各別反應體積各為2.7m3,以現場混合廢水作為進流基質(TKN/COD = 0.15),進入缺氧脫硝槽進行異營性脫硝反應(COD降解以及硝酸氮之去除)後,再進入串聯式好氧硝化槽進行自營性硝化反應,其硝化槽中產生之硝酸氮再迴流至缺氧脫硝槽提供電子接受者以達到總氮之去除。
研究初期缺氧槽脫硝功能表現不彰,進流水中COD殘留至好氧槽,導致自營性硝化功能不顯著且無硝酸氮生成以提供脫硝槽去除COD之電子接受者。為克服此現象,於是提升缺氧脫硝槽功能為首要目標,其策略為額外添加硝酸鹽氮於缺氧槽中模擬好氧槽迴流水中所提供之硝酸鹽氮作為電子接收者,強化缺氧槽中異營脫硝菌活性,經兩個月強化馴養後缺氧槽單位微生物去除量可達0.142 kg COD/kg-VSS-day ,硝酸鹽氮亦可達100%轉換;在好氧硝化槽有機物體積負荷降低後仍無明顯硝化現象,於是重新植入具有硝化活性之好氧污泥後並以固定式擔體置入槽中截留微生物,增加反應槽之SRT作為硝化功能提升之策略,策略執行後隨即可發現硝化活性漸升,整體氨氮轉換率於一個月內達到100%,F(NH4+-N)r/M可以達0.051 kg NH4+-N/kg-VSS-day。
在此研究中亦針對不同碳源進行脫硝活性評估,在光電廢水處理系統中,醋酸、PI廢液皆為一良好之碳源選擇,其比脫硝速率分別為5.32 mg-N/gVSS-hr以及5.92 mg-N/gSS-hr ,丙酮經一段時間馴養亦可達到一良好之脫硝速率高達7.44 mg-N/gVSS-hr;在光電廢水處理系統中異營脫硝菌主要利用基質為MEA供獻之有機碳源,以DMSO以及TMAH作為脫硝碳源時期脫硝活性皆不佳。
以專一性引子配合尾端修飾限制片段長度多型性(Terminal Restriction Fragment Length Polymorphism, T-RFLP)監測光電廢水處理程序好氧硝化槽中氨氧化菌變化,發現系統中以Nitrosomonas europea 為主,期間植入一以Nitrosospira sp. 為主之好氧硝化污泥,於14天後隨即消失,可能因其適應能力較差,容易隨著水流而流失;在好氧硝化槽功能彰顯後各槽中懸浮污泥以及固定擔體上之生物膜中AOB菌相皆以Nitrosomonas europea 為主。
以16S rRNA cloning library建立缺氧脫硝槽脫硝活性最佳時期之微生物菌相,系統中約22%微生物菌相以Dechloromonas sp.為主,主要利用MEA代謝過程中形成之醋酸作為脫硝碳源,亦有12%之比例為硫氧化菌相關菌種,與DMSO代謝過程最中形成硫酸鹽類有關。
A pilot-scaled AO process treating TFT-LCD wastewater which contaminated with strong nitrogen was evaluated this study. The main point were focus on enhance strategies of anoxic denitrification and oxic nitrification, evaluation of operating parameters and functional indicators and microbial population dynamic with molecular analysis.
In this AO process pilot plan, the volume of anoxic denitrification reactor is 2.4 m3, and the volume of oxic nitrification reactor is 2.7 m3 which is one of the three series reactors. The influent is practical photonic wastewater which TKN/COD ratio is 0.15. In the AO process, nitrate and organic carbon provided anoxic denitrification reaction and organic nitrogen was degraded to ammonia. Ammonia oxidized to nitrate in the oxic nitrification reactors and nitrate was recirculated back to anoxic tank.
During the study, the anoxic denitrification was able to degrade COD efficienctly while adding nitrate in anoxic tank. The Fr/M ratio was 0.142 kg COD/kg-VSS-day after two month enchancement. In addition, the nitrification could convert ammonia to nitrate efficiently with carriers while COD volumetric loading rate was decreased in anoxic tank. The F(NH4+-N)r/M ratio was 0.051 kg NH4+-N/kg-VSS-day in run6.
In this study, the activity of denitrfication with different carbon source were assayed. In the photonic wastewater treatment, the acetic acid, the PI wastewater were better carbon sources The SDNR were 5.32 mg-N/gVSS-hr and 5.92 mg-N/gSS-hr in respectively. The acetone could be utilized as carbon source while incubation in months and the SDNR was 7.44 mg-N/gVSS-hr. In the study, MEA was the main organic carbon source in anoxic tank for denitrifing bacteria. However, TMAH and DMSO could not be degraded by denitrifier as carbon source.
The microbial diversity of ammonia oxidizingbacteria(AOB) was monitored using terminal restriction fragment length polymorphism(T-RFLP). Nitrosomonas europea was dominant AOB in oxic tank. Based on cloning-sequence analysis with the sample taken at day 192 in anoxic tank, Dechloromonas sp. and sulfur oxidation organism were 22% and 12%.
Abeling U. and C. F. Seyfried (1992) Anaerobic-aerobic treatment of high-strengh ammonium wastewater-nitrogen removal via nitrite. Wat. Sci. Technol. 26: 1007-1015.
Akunna J. C., C. Bizeau and R. Moletta (1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycose, acetic acid, lactic acid and methanol. Wat. Res. 27, 1303-1312.
Alleman J. E. (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Res. 27: 1303-1312.
Amann, R. I., J. Stromley, R. Devereux, R. Key and D. A. Stahl (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623
Andreae M. O. (1980) Dimethylsulfoxide in marine and freshwaters. Limnology and Oceanography 25: 1054–1063.
Anthonisen A. C., R. C. Loehr, T. B. S. Prakasam and E. G. Srinath (1976) Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed. 48, 835-852.
Anthony, C. (1982) The biochemisstry of Methylotrophs, Academic press, Lodon
Araujo J.C. and Chernicharo C.A.L. (2007) Detection of Anaerobic Ammonium-oxidizing bacteria in different sludges and in a landfill leachate sample, Microbial Diversity 1,11th IWA World Congress on Anaerobic Digestion:23-27
Bentley, M. D., Douglass, I. B., Lacadie, J. A., Whittier, D. R. (1972) The photolysis of dimethylsulphide in the air. Journal of the Air Pollution Control Association 22: 359–63
Biolous, R. T. and Weiner, J. H. (1985) Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia HB101. Journal of bacteriology 162: 1151-1155
Biswas N. and R. G. Warnock (1985) Nitrogen transformations and fate of other parameters in columnar denitrification. Wat. Res. 19: 8: 1065-1071.
Bock E. and H. P. Koops (1992) The genus Nitrobacter and related genera. In the Procaryotes. 2nd. End, (Balows A., H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer eds), 2302-2309, Springer – Verlag, Berlin.
Bode H., C. F. Seyfried and A. Kraft (1987) High-rate denitrification of concentrated nitrate wastewater. J. Wat. Sci. Technol. 19:163.
Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackall. (1995) Bacterial community structure of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61:1910–1916.
Borole, A.P., J.R. Mielenz, T.A. Vishnivetskaya, and C.Y. Hamilton. (2009). Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels 2
Bousfield, I. J. and Green, P. N. (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson)Emend, Green and Bousfield. International journal of systematic bacteriology 35: 209
Brimblecombe, P. and Shooter, D. (1986) Phtot-oxidation of dimethylsulfide in aqueous solution. Marine chemistry 19: 343-353
Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G. (1987) Oceanic phytoplankton atmospheric sulfur, cloud albedo and climate. Nature 326: 655-661
Charles G. (1999) Denitrification of high-nitrate, high-salinity wastewater. Wat. Res. 33, 223-229.
Copper G. S. and R. L. Smith (1983) Sequence of products formed during denitrification in some diverse western soils. Soil Sci. Soc. Amer. Proc. 27, 659-664.
Crump, B.C. and J.E. Hobbie. (2005). Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718-1729.
De Bont, J. A. M., van Dijiken, J. P., Harder, W. (1981) Dimethyl sulfoxide and dimethyl sulfide as a carbon, sulfur and energy source for growth of Hyphomicrobium S. Journal of general microbiology 127: 315-323
Delwiche C. C. (1970) The nitrogen cycle. Scientific American. 223, 137-149.
Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig, and E. Bock. (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov., and its phylogenetic relationship. Arch. Microbiol. 164:16-23.
Etchebehere C., I. Errazquin, E. Barrandeguy, P. Dabert, R. Moletta and L. Muxi (2001) Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol. Ecol. 35, 259-265.
Fick M. (1997) Influence of c-sources on the denitrification rate of a high-nitrate rate concentrated industrial wastwater. Wat. Res. 31, 583-589.
Ghisalba, O., Cevery, P., Kuenzi, M., Schar, H. P. (1985) Biodegradation of chemical waste by specialized methylotrophs, an alternative to physical method of waste disposal. Conservation & Recycling 8: 47-71
Ghyoot W., Vandaele S. and Verstraete W. (1999) Nitrogen removal from sludge reject water with a membrance-assisted bioreactor. Wat. Res. 33, 23-32.
Glass C. and J. Silverstein (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res. 32, 831-839.
Goreau T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy M. B., F. W. Valois and S. W. Watson (1980) Production of NO and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526-532.
Gregory L. G., P. L. Bond, D. J. Richardson and S. Spiro (2003) Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiol. 149:229-237.
Gumaelius L. (1996) Potential biomarker for denitrification of wastewater: effect of process variables and cadmium toxicity. Wat. Res. 30, 3025-3031.
Hampton, D. and Zatman, L. J. (1973) The metabolism to teramethylammonium chloride by baterium 5H2. Biochemical Society transactions 1: 667-668
Hanaki K., H. Zheng and T. Matsuo (1992) Production of nitrous oxide gas during denitrification of wastewater. Wat. Sci. Tech. 26, 1027-1036.
Hansen K. H., Ahring, B. K. and Raskin, L. (1999) Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65: 4767-4774.
Hantsis-Zacharov E, Halpern M. (2007) Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol. 57:2344-2348
Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM. The Sharon process: an innovative method for nitrogen removal from ammonium-rich wastewater. Wat Sci Technol 1998;37:135–42
Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P. (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol.72:2637-2643
Heylen K, Lebbe L, and De Vos P (2008) Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol.7: 58-73
Hiorns, W. D., R. C. Hastings, I. M. Head, A. J. McCarthy, J. R. Saunders, R. W. Pickup, and G. H. Hall. (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141:2793–2800.
Hong Z., K. Hanaki and T. Mastsuo (1994) Greenhouse gas-N2O production during denitrification in wastewater treatment. Wat. Res. Tech. 39, 13-21.
Hooijmans C. M., S. G. M. Geraats, E. W. J. van Niel, L. A. Roberston, J. J. Heijnen and K. C. A. Luyben (1990) Denitrification of growth and coupled nitrification/denitrification by immobilized Thiosphaera pantotropha using measurement and modeling of oxygen profiles. Biotech. Bioeng. 36, 931-939.
Horz, H. P., Rotthauwe, J. H., Lukow, T., Liesack, Werner. (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods. 39: 197–204
Hovanec T. A. and E. F. Delong (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62, 2888-2896.
Hovanec, T. A., L. T. Taylor, A. Blakis, and E. F. Delong. (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl. Environ. Microbiol. 64: 258–264.
Ilies P. and D. S. Mavinic (2001) The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate. Wat. Res. 35, 2065-2072.
Ishii K. and M. Fukui (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.
Ishii, S., M. Yamamoto, M. Kikuchi, K. Oshima, M. Hattori, S. Otsuka, and K. Senoo. (2010). Microbial Populations Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil, as Revealed by Comparative 16S rRNA Gene Analysis (vol 75, pg 7070, pg 2010). Appl Environ Microb 76:3764-3764.
Itokawa H., K. Hanaki and T. Matsuo (2001) Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Wat. Res. 35, 657-664.
Jaap R. (1998) Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. Strain JR12. Appl. Environ. Microbiol. 64.
Jeill O. H. (1999) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.
Jetten M. S. M., Wagner M., Fuerst J., van Loodsdrecht M. C. M., Kuenen J. G., Strous M.,(2001) Microbiology and application of the anaerobic ammonium oxidation (anammox) process, Curr. Opin. Biotechnol. 12 : 283–288.
John D. Coates,* Urania Michaelidou, Royce A. Bruce, Susan M. O'Connor, Jill N. Crespi, and Laurie A. Achenbach (1999) Ubiquity and Diversity of Dissimilatory (Per)chlorate-Reducing Bacteria Applied and Environmental Microbiology. 65:5234-5241
Juretschko S., A. Loy, A. Lehner and M. Wagner (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25:84-99.
Kaplan, B. H., and Stadtman, E. R. (1968) Ethanolamine deaminase (Clostridium sp.) Journal of biological chemistry 243: 1787-1794
Knowles G., A. L. Downing and M. J. Barrett (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer. J. Gen. Microbiol. 38: 263.
Konning, H. and Stetter, K. (1982) Isolation and charcterization of Methanolobus Tindarius sp. Nov., a coccoid methanogen grow-ing only on methanol and methylamines. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale C 3: 478-490
Kowalchuk G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
Kuai, L.P., Verstraete, W., 1998. Ammonium removal by the oxygen-limited autotrophic nitrification–denitrification system. Appl. Environ. Microbiol. 64 (11), 4500–4506
Lapara T. M., C. H. Nakatsu, L. Pantea and J. E. Alleman (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66:3951-3959.
Lai, Berlin and Wen K. Shieh, (1996) Batch monoethylamine degradation via nitrate respiration. Water Research 30(10): 2530-2534
Laura A. van Niftrik a, John A. Fuerst b, Jaap S. Sinninghe Damste c, J. Gijs Kuenen a, Mike S.M. Jetten a,d, Marc Strous , (2004)The anammoxosome: an intracytoplasmic compartment in anammox bacteria, FEMS Microbiol. Lett. 233:7–13
Lei C. N., Whang L. M. and Lin H. L. (2008) Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater Water Science & Technology 58.5:1001-1006
Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Röling WF. (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol. 9:1956-1968
Liu, B.B., F. Zhang, X.X. Feng, Y.D. Liu, X. Yan, X.J. Zhang, L.H. Wang, and L.P. Zhao. (2006) Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. Fems Microbiol Ecol 55:274-286
Liu J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42.
Liu W. T., O. C Chan and H. H. Fang (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 36:3203-3210.
Lozinov A. B. and V. A. Ermachenko (1959) NH4+ oxidation by nitrite bacteria as function of certain factors of the medium. The effect of (NH4)2SO4 concentration. Microbiology. 28, 674-679.
Matson J. V. and W. G. Characklis (1976) Diffusion into microbial aggregates. Wat. Res. 10, 877-885.
Maneesha P. Ginige, Jürg Keller, and Linda L. Blackall (2005) Investigation of an Acetate-Fed Denitrifying Microbial Community by Stable Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescent In Situ Hybridization-Microautoradiography. Appl. Environ. Microbiol.71:8683-8691
Matzen, N. and Hirsch, P. (1982) Improved growth conditions for Hyphomicrobium sp. B-522 and two additional strains. Archives of microbiology 131: 32–3
McCaig, A. E., T. M. Embley, and J. I. Prosser. (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120: 363–368.
Mechichi T, Stackebrandt E, Gad'on N, Fuchs G.(2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol. 178:26-35
Mills, D. K., Fitzgerald, K., Litchfield, C. D., Gillevet, Patrick M. (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. Journal Of Microbiological Methods. 54: 57-74
Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156–2162.
Moller, B., Ossmer, R., Howard, B. H., Gottschalk, G., Hippe, H. S. (1984) a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa Ovata spec. nov. Archives of microbiology 139: 388-396
Mulder A., A. A. van de Graaf, L. A. Robertson and J. G. and J. G. Kuenen (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. 16:177-183.
Mulder, A., van de Graaf, A.A., Robertson, L.A., Kuenen, J.G.,(1999) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16 : 177–184.
Mulder, A., 2006. Process for the biological denitrification of ammonium containing wastewater. International Patent Application, WO 2006/022539
Muratani, T. (1999) Biological treatment of wastewater containing DMSO. Sharp Giho 73: 20-25 (in Japanese)
Murakami, N. T., Kurimura, H., Kirimura, K., Kino, K., Usami, S. (2002) Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WUK217. Journal of bioscience and bioengineering 94: 52-56
Munch E. V., P. Lant and J. Keller (1996) Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Wat. Res. 30, 277-284.
Muyzer G. and K. Smalla (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenkoek 73:127-141.
Muyzer G. and N. B. Ramsing (1995) Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32:1-9.
Muyzer G., E. C. de Waal and A. G. Uitterlinden (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Myers R. M., T. Maniatis and L. S. Lerman (1987) Detection and localization of single base change by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527.
Nakajima M., T. Hayamizu and H. Nishimura (1984) Inhibitory effect of oxygen on denitrification and denitrification in sludge form an oxidation ditch. Wat. Res. 18, 339-343.
Narrod, S. A. and Jakoby, W. B. (1964) Metabolism of ethanolamine an ethanolamine oxidase. Journal of biological chemistry 239: 2189-2193
Newman, S.A. (1985) Acid and sour gas treating processes. Houston TX, Gulf Publishing Co.
Ndegwa A. W. , Wong, C. K. R., Chu, A. , Bentley L. R. , and Lunn R. D. S. (2004) Degradation of monoethanolamine in soil. Environmental Engineering Science 3: 137-145
Ni, S. and Boone, D. R. (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from oil well, characterization of M. siciliae T4/MT and emendation of M. siciliae. International journal of systematic bacteriology 41: 410- 416
Ohara, M., Katayama, Y., Tsuzaki, M., Nakamoto, S., Kurishi, H. (1990) Pacracoccus kocurii sp. Nov., a tetramethylammonium-assimilating bacterium
International journal of systematic bacteriology 40: 292-296
OH J. and J. Silverstein (1996) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.
Olsen G. J., D. J. Lane, S J. Giovannoni and N. P. Pace (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365.
Painter H. A. and J. E. Loveless (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Wat. Res. 17, 237-248.
Painter HA. (1970) A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4:393–450.
Park, S. J., Yoon, T. I., Bae, J. H., Seo, H. J., Park, H. J. (2001) Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry 36: 579–589
Park, H., Regan, J. M., Noguera, D. R. (2002)Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes. Water Science And Technology 46: 273-280
Parker D. S. (1986) Nitrification in trickling filters. J. WPCF. 58, 9: 869-902.
ParedeD. s, Kuschk P., Mbwette T. S. A., Stange F., Muller R. A., Koser H.(2007) New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review, Eng. Life Sci.7: 13–25
Patureau D., J. Davison, N. Bernet and R. Moletta (1994) Denitrification under various aeration conditions in Comamonas sp., strain Sgly2. FEMS Microbiol. Ecol. 14, 71-78.
Payne W. J. (1981) Denitrification, Chap. 2~3, John Wiley & Sons, New York.
Pynaert, K., Smets, B.F., Beheydt, D., Verstraete, W., 2004. Start-upof autotrophic nitrogen removing reactors via sequential biocatalyst addition. Environ. Sci. Technol. 38 (4), 1228–1235.
Quevedo M., E. Guynot and L. Muxi (1996) Denitrifying potential of methanogenic sludge. Biotechnol Lett. 18, 1363-1368.
Randall C. W. (1984) Nitrite built-up in activated sludge resulting from temperature effects J. WPCF. 56, 1039-1044.
Regana, J. M., G. W. Harringtonb, H. Baribeauc, R. deLeond, D. R. Noguera. (2003a) Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Resh. 37: 197-205.
Robertson L. A., E. W. van Niel, R. A. M. Torremans and J. G. Kuenen (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Enviton. Microbiol. 54, 2812-2818.
Rotaru, A.E., C. Probian, H. Wilkes, and J. Harder. (2010) Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate. Fems Microbiol Ecol 71:460-468.
Sattley WM, Madigan MT.(2002) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol. 72:5562-5568
Schramm A, D. deBeer, Heuvel JCvd, S. Ottengraf, R. Amann. (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. Along a macroscale gradient in a nitrifying bioreactor: quanti.cation by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65: 3690–3696.
Schramm, A., D. de Beer, M. Wagner, and R. Anann. (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480–3485.
Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann, and K.-H. Schleifer. (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62: 4641–4647.
Schmid M., Walsh K., Webb R., Rijpstra W. I. C., Van de Pas-SchoonenK. T., Verbruggen M. J. et al.,(2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria, Syst. Appl. Microbiol. 26 :529–538.
Sekiguchi Y., Y. Kamagata, K. Nakamura, A. Ohashi and H. Harada (1999) Fluorescent in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65:1280-1288.
Sekiguchi Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol. 144: 2655-2665.
Sharma B. and R. C. Ahlert (1977) Nitrification and nitrogen removal. Wat. Res. 11, 897-925.
Shi HP, Lee CM. (2007) Phosphate removal under denitrifying conditions by Brachymonas sp. strain P12 and Paracoccus denitrificans PP15. Can J Microbiol.53:727-737.
Simo, R. (1998) Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters. Journal of chromatography A 807: 151-164
Sliekers, A.O., Derwort, N., Gomez, J.L.C., Strous, M., Kuenen, J.G. and Jetten, M.S.M., 2002, Completely autotrophic nitrogen removal over nitrite in one single reactor, Water Res, 36: 2475–2482
Sliekers A. O., Third K. A., Abma W., Kuenen J. G., Jetten M. S. M.,(2003) CANON and Anammox in a gas-lift reactor, FEMS Microbiol. Lett. 218 :339–344
Smith P. G. and P. Coackley (1984) Diffusity, tortuosity and pore structure of activated sludge. Wat. Res. 18, 117-122.
Snaidr J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896.
Sowers, K. R. and Ferry, J. G. (1983) Isolation and charcterization of a methylotrophic marine methanogen, Methanoccoides methylutens gen. nov., Applied and Environmental Microbiology 45: 684-690
Sowers, K. R., Baron, S. F., Ferry, J. G. (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methan-producing bacterium isolated from marine sediments . Applied and Environmental Microbiology 47: 971-978
Stehr G., B. Böttcher, P. Dittberner, G. Rath, H-P. Koops. (1995) The ammonia-oxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol. Ecol. 17: 177–86.
Stenstrom M. K. et. al. (1979) The effect of dissolved oxygen concentration on nitrification. Wat. Res. 14: 643-649.
Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to b-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62: 4147–4154.
Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA, Mesbah NM, Loffler FE.(2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol. 72:2775-82
Suylen, G. M. H. and Stefess, D. (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Archives of microbiology 146: 192–198.
Suzuki M. T. and S. J. Giovannoni (1996) Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
Tanaka H., S. Uzman and I. J. Dunn (1981) Kinetics of nitrification using a fluidized sand bed reactor with attached growth. Biotech. and Bioeng. 24: 660.
Terry K. R. and A. B. Hooper (1981) Hydroxylamine oxidoreductase:a 20-heme, 200,000 molecular weight cytochrome c with unusual denaturation properties which forms a 63,000 molecular weight monomer after heme removal. Biochemistry. 20, 7026-7032.
Teske A., C. Wawer, G. Muyzer and N. B. Ramsing (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62:1405-1415.
Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M., 2001, The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria, Syst Appl Microbiol, 24: 588–596
Turk O. and D. S. Mavinic (1989) Maintaining nitrite build-up in a system acclimated to free ammonia. Wat. Res. 23, 1383-1388
Urakami, T. and Komagata, K. (1984) a new genus of fcultatively methylotrophic bacteria. International journal of systematic bacteriology 34: 188-201
Urakami, T., Araki, H., Kobayashi, H. (1990) Isolation and identification of tetramthylammonium-Biodegrading bateria. Joural of Fermentaation annd bioengineering 70(1): 41-44,
Urakami, T., Araki, H., Oyanagi, H., Suzuki, K., Komaagata, K. (1990) Paracoccus aminoilus sp. Nov. And Paracoccus aminovorans sp. nov., Which utilize N,N-dimethyformamide. Journal of Systematic Bacteriology 25: 287-291
Urakami, T.,Araki, H., Kobaayashi, H. (1990) Isolation and identification of teramethylammonium-biodegrading bateria. Journal of Fermentation and Bioengineering 70: 41-44
van der Hoek J. P., P. J. M. Latour and A. Klapwijk (1988) Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket dinitrification reactor fed with methonal. Appl. Microbiol. 61, 1246-1251.
Van Dongen, L. G. J. M., Jetten, M. S. M., van Loosdrecht, M. C. M., 2001. The combined Sharon/Anammox process. STOWA Report 2000-25
Verstraete, W., Philips, S., 1998. Nitrification–denitrification processes and technologies in new contexts. Environ. Pollut. 102, 717–726.
Villaverde S., P. Garcia and F. Fdz-Polanco (1997) Influence of pH over nitrifying biofilm activity in submerged biofilters. Wat. Res. 31, 1180-1186.
Voytek, M. A., and B. B. Ward. (1995) Detection of ammonia-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444–1450.
Wagner M., Roger, A. J., Flax, J. L., Brusseau, G. A., and Stahl, D. A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180:2975-2982.
Wagner, M., G. Rath, H.-P. Koops, J. Flood, and R. Amann. (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34: 237–244.
Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. (1995) In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251–264.
Ward, B. B., M. A. Voytek, and K.-P. Witzel. (1997) Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification. Microb. Ecol. 33: 87–96.
Watts, J. E., Wu, Q., Schreier, S. B., May, H. D., Sowers, K. R. (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environmental Microbiology,3: 710-719
Winderl, C., B. Anneser, C. Griebler, R.U. Meckenstock, and T. Lueders. (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microb 74:792-801.
Wouter R.L. van der Stara,, Wiebe R. Abmab, Dennis Blommersc, Jan-Willem Mulderc,Takaaki Tokutomid, Marc Strouse, Cristian Picioreanua, Mark C.M. van Loosdrechta,(2007)Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam, WAT ER RE S E ARCH 41: 4149 – 4163
Wrage N., G. L. Velthof, M. L. van Beusichem and O. Oenema (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Bio Biochem. 33, 1723-1732.
Wu J. H., W. T. Liu, I. C. Tseng and S. S. Cheng (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147:373-382.
Ye R. W., B. A. Averill and J. M. Tiedje (1994) Denitrification:production and comsumption of nitric oxide. Appl. Environ. Microbial. 60, 1053-1058.
Yen, H. C. and Marrs, B. (1977) Growth of Rhodopseudo-mans capsula under anaerobic dark conditions with dimethyl sulfoxide. Archives of biochemistry and biophysics 181: 411-418
Youssef, N., C.S. Sheik, L.R. Krumholz, F.Z. Najar, B.A. Roe, and M.S. Elshahed. (2009) Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Appl Environ Microb 75:5227-5236.
You, S. J., C. L. Hsu, S. H. Chuang, C. F. Ouyang. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O system. Water Resh. 37: 2281-2290.
Zinder, S. H. and Brock, T. D. (1978) Dimethyl sulphoxide reduction by microorganisms. Journal of general microbiology 105: 342–55.
Zumft W. G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 633-616.
陳賢焜,鄭幸雄,(1994),「生物膜化脫硝程序處理高濃度氨氮廢水之研究」,國立成功大學環境工程研究所博士論文。
陳文欽,鄭幸雄,(1997),「固定生物流體化床處理高氮樹脂廢水之特性研究」,國立成功大學環境工程研究所博士論文。
陳彥男,鄭幸雄,(2002),「三段式流體化床生物程序處理壓克力人造纖維製程廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
陳廷光、陳重男、倪振鴻. (2002),GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究.,第二十七屆廢水處理技術研討會論文
彭欽鑫,鄭幸雄,(2001),「三段式流體化床三相生物程序處理人造纖維製程廢水之生物分解性研究」,國立成功大學環境工程研究所碩士論文。
吳坤龍,鄭幸雄,曾怡禎(2003),「高溫厭氧菌分解PAN廢水之族群變化與功能評估」,國立成功大學環境工程研究所碩士論文。
莊蕙萍,鄭幸雄,(2004),「三段式流體化床生物程序處理PAN廢水之程序功能評估與微生物族群動態變化之探討」,國立成功大學環境工程研究所碩士論文。
楊雅斐,鄭幸雄,(2004),「三段生物程序中好氧硝化槽功能評估與分生檢測生態研究」,國立成功大學環境工程研究所碩士論文。
黃淑君,鄭幸雄,(2005),「不織布薄膜反應槽好氧生物分解光電廢水程序功能及生態變化之研究」,國立成功大學環境工程研究所碩士論文。
校內:2015-08-27公開