| 研究生: |
呂佳馨 Leu, chia-hsin |
|---|---|
| 論文名稱: |
Kallistatin對於小鼠感染A型流行性感冒病毒治療效果之評估 Therapeutic effects of kallistatin on influenza A virus infection in mice |
| 指導教授: |
吳昭良
Wu, Chao-liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 基因治療 、慢病毒 、A型流行性感冒病毒 |
| 外文關鍵詞: | influenza A virus, lentivirus, gene therapy |
| 相關次數: | 點閱:167 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行性感冒病毒感染是世界上高傳染性的疾病之一。通常流感病毒的感染會造成細胞激素的分泌和病毒複製所引起的急性發炎,例如支氣管炎、肺炎或是嚴重致死的急性肺炎。這些細胞激素會吸引嗜中性白血球、巨噬細胞和淋巴細胞到感染部位,導致末端氣管窄化和造成肺部組織的損傷。另外,流感病毒外套膜的兩個糖蛋白hemagglutinin (HA)和neuraminidase (NA),在流感病毒的感染上也扮演重要角色。HA可以幫助流感病毒和目標細胞的唾液酸(sialic acid)受器結合,然後進入細胞內進行複製,而絲胺酸蛋白酶(serine protease)會將HA0切割成HA1和HA2,增進病毒的感染力,這對病毒的致病力很重要。目前已知kallikrein為絲胺酸蛋白酶家族之一員,在肺炎中會大量增加。而kallistatin是kallikrein的抑制劑,且己被証實具有抗發炎的功能。在本篇研究裡,我們研究kallikrein在HA切割上的影響,同時也探討kallistatin在流感病毒感染上的主要角色。首先,我們評估kallistatin和kallikrein對於流感病毒感染的影響。結果顯示kallikrein可促進HA切割,增加流感在MDCK (Madin-Darbin Canine kidney)細胞的複製與感染能力,然而kallistatin卻可以避免此現象。進一步在流感病毒感染下,給予攜帶人類kallistatin之慢病毒載體(lentiviral vector)LV-HKBP治療的小鼠存活率比給予攜帶綠色螢光蛋白之慢病毒載體LV-GFP組的小鼠高。另外在LV-HKBP治療後的小鼠血清中,介白素六號 (interleukin-6, IL-6)表現下降,而肺的損傷減緩。綜合以上結果, kallistatin可減少流感病毒的感染和降低病毒所引起的免疫病理變化,因此有潛力發展為抗流感病毒的藥物。
Influenza virus infection is one of the most pandemic infectious diseases in the world. In general, influenza virus infection induces bronchitis, pneumonia, and even severe lethal pneumonia caused from extensive cytokine secretion and acute inflammation at areas of viral replication. These cytokines are associated with the recruitment of neutrophils, macrophages and lymphocytes to the infection site resulting in narrow of the terminal bronchi and lung damage. In addition, two envelope glycoproteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), play an important role in virus infection. HA mediates influenza attachment to sialylic acid cell receptors and virus entry into target cells. The cleavage of HA0 into HA1/HA2 with secreted serine proteases activates virus infectivity and is important for the pathogenesis of influenza virus. Kallikrein is a serine protease that increases in pneumonia. Kallistatin, a serine protease inhibitor, has been shown to reduce inflammation. In this study, we investigated the effect of kallikrein on HA cleavage and the potential role of kallistatin in influenza infection. First, we evaluated the effects of kallistatin and kallikrein on influenza virus infection in mice. Our results showed that kallikrein could promote HA cleavage and increase influenza replication and infection in MDCK (Madin-Darbin Canine kidney) cells, which could be abrogated by kallistatin. Furthermore, in mice infected with influenza viruses, the survival rate of LV-HKBP, a lentiviral vector encoding human kallistatin, was higher than that of the mice treated with LV-GFP, a lentiviral vector encoding green fluorescent protein. Besides, the level of interleukin-6 (IL-6) was lower in the serum and the lung injury was alleviated in the LV-HKBP-treated mice than those in LV-GFP-treated mice. Taken together, these results show that kallistatin can decrease influenza virus infection and hence reduce immunopathology. Furthermore, kallistatin may have potential to act as an anti-influenza agent.
Akaike, T., Molla, A., Ando, M., Araki, S., and Maeda, H. (1989). Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice. J Virol 63, 2252-2259.
Agata, J., Chao, L., and Chao, J. (2002). Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 40, 653-659.
Babiuk, L. A., Lawman, M. J., and Ohmann, H. B. (1988). Viral-bacterial synergistic interaction in respiratory disease. Adv Virus Res 35, 219-249.
Bledsoe, G., Shen, B., Yao, Y., Zhang, J. J., Chao, L., and Chao, J. (2006). Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther 17, 545-555.
Chao, J., Schmaier, A., Chen, L. M., Yang, Z., and Chao, L. (1996). Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med 127, 612-620.
Callan, R. J., Hartmann, F. A., West, S. E., and Hinshaw, V. S. (1997). Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases. J Virol 71, 7579-7585.
Dawson, T. C., Beck, M. A., Kuziel, W. A., Henderson, F., and Maeda, N. (2000). Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156, 1951-1959.
Chen, B. C., Yu, C. C., Lei, H. C., Chang, M. S., Hsu, M. J., Huang, C. L., Chen, M. C., Sheu, J. R., Chen, T. F., Chen, T. L., et al. (2004). Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J Immunol 173, 5219-5228.
Garten, W., Bosch, F. X., Linder, D., Rott, R., and Klenk, H. D. (1981). Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology 115, 361-374.
Gotoh, B., Ogasawara, T., Toyoda, T., Inocencio, N. M., Hamaguchi, M., and Nagai, Y. (1990). An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9, 4189-4195.
Griesbacher, T., Rainer, I., Tiran, B., Fink, E., Lembeck, F., and Peskar, B. A. (2003). Mechanism of kinin release during experimental acute pancreatitis in rats: evidence for pro- as well as anti-inflammatory roles of oedema formation. Br J Pharmacol 139, 299-308.
Hsieh, H. P., and Hsu, J. T. (2007). Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des 13, 3531-3542.
Imai, Y., Kuba, K., Neely, G. G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., Ermolaeva, M., Veldhuizen, R., Leung, Y. H., Wang, H., et al. (2008). Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235-249.
Julkunen, I., Melen, K., Nyqvist, M., Pirhonen, J., Sareneva, T., and Matikainen, S. (2000). Inflammatory responses in influenza A virus infection. Vaccine 19 Suppl 1, S32-37.
Jayasekera, J. P., Vinuesa, C. G., Karupiah, G., and King, N. J. (2006). Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J Gen Virol 87, 3361-3371.
Koyama, S., Sato, E., Numanami, H., Kubo, K., Nagai, S., and Izumi, T. (2000). Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am J Respir Cell Mol Biol 22, 75-84.
Kishimoto, T. (2005). Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol 23, 1-21.
Lazarowitz, S. G., Goldberg, A. R., and Choppin, P. W. (1973). Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56, 172-180.
Ludwig, S., Planz, O., Pleschka, S., and Wolff, T. (2003). Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9, 46-52.
Li, W., Liu, Y., Mukhtar, M. M., Gong, R., Pan, Y., Rasool, S. T., Gao, Y., Kang, L., Hao, Q., Peng, G., et al. (2008). Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS ONE 3, e1985.
Longhi, M. P., Wright, K., Lauder, S. N., Nowell, M. A., Jones, G. W., Godkin, A. J., Jones, S. A., and Gallimore, A. M. (2008). Interleukin-6 is crucial for recall of influenza-specific memory CD4 T cells. PLoS Pathog 4, e1000006.
MacDonald, R. J., Margolius, H. S., and Erdos, E. G. (1988). Molecular biology of tissue kallikrein. Biochem J 253, 313-321.
Miao, R. Q., Agata, J., Chao, L., and Chao, J. (2002). Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood 100, 3245-3252.
Peranteau, W. H., Zhang, L., Muvarak, N., Badillo, A. T., Radu, A., Zoltick, P. W., and Liechty, K. W. (2008). IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 128, 1852-1860.
Scheiblauer, H., Reinacher, M., Tashiro, M., and Rott, R. (1992). Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis 166, 783-791.
Sato, E., Nelson, D. K., Koyama, S., Hoyt, J. C., and Robbins, R. A. (2000). Bradykinin stimulates eotaxin production by a human lung fibroblast cell line. J Allergy Clin Immunol 106, 117-123.
Stadnicki, A., Mazurek, U., Gonciarz, M., Plewka, D., Nowaczyk, G., Orchel, J., Pastucha, E., Plewka, A., Wilczok, T., and Colman, R. W. (2003). Immunolocalization and expression of kallistatin and tissue kallikrein in human inflammatory bowel disease. Dig Dis Sci 48, 615-623.
Subbarao, K., and Joseph, T. (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol 7, 267-278.
Salomon, R., Hoffmann, E., and Webster, R. G. (2007). Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A 104, 12479-12481.
Szretter, K. J., Gangappa, S., Lu, X., Smith, C., Shieh, W. J., Zaki, S. R., Sambhara, S., Tumpey, T. M., and Katz, J. M. (2007). Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 81, 2736-2744.
Shen, B., Hagiwara, M., Yao, Y. Y., Chao, L., and Chao, J. (2008). Salutary effect of kallistatin in salt-induced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 51, 1358-1365.
Tashiro, M., Ciborowski, P., Reinacher, M., Pulverer, G., Klenk, H. D., and Rott, R. (1987). Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 157, 421-430.
Teo Min Li (2007). Lentivirus-mediated kallistatin gene transfer for the treatment of murine lung cancer. National Cheng Kung University, Taiwan.
Tse, L. Y., Sun, X., Jiang, H., Dong, X., Fung, P. W., Farzaneh, F., and Xu, R. (2008). Adeno-associated virus-mediated expression of kallistatin suppresses local and remote hepatocellular carcinomas. J Gene Med 10, 508-517
Walker, J. A., Sakaguchi, T., Matsuda, Y., Yoshida, T., and Kawaoka, Y. (1992). Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 190, 278-287.
Yao, D., Chen, Y., Kuwajima, M., Shiota, M., and Kido, H. (2004). Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumotropic influenza A virus: implications for influenza-associated encephalopathy. Biol Chem 385, 487-492.
Zhirnov, O. P., Ovcharenko, A. V., and Bukrinskaya, A. G. (1985). Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. J Gen Virol 66 ( Pt 7), 1633-1638.
Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871-875.
Zhirnov, O. P., Ikizler, M. R., and Wright, P. F. (2002). Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. J Virol 76, 8682-8689.