簡易檢索 / 詳目顯示

研究生: 柯酈
Ko, Li
論文名稱: 臺灣屋頂型太陽光電開發潛力之研究
Assessment of the development potential of rooftop photovoltaic in Taiwan
指導教授: 陳家榮
Chen, Chia-Yon
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 232
中文關鍵詞: 屋頂型太陽光電地理資訊系統二值化法
外文關鍵詞: Rooftop Photovoltaic, Geographic Information Systems(GIS), Binarization Algorithm
相關次數: 點閱:165下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球廣泛使用的化石能源日趨枯竭,其大量使用更造成全球暖化的問題,使得各國對傳統化石能源逐漸產生一定程度的不確定感及不安全感。面對這些挑戰,開發替代性能源成為各國必要的發展策略,以降低其能源供應的潛在風險,並同時解決環境不斷惡化的問題。太陽光電是潔淨的再生能源之一,臺灣地處亞熱帶,太陽光日照強烈,適合發展太陽能,相關研究與應用在國內亦逐步受到重視。
    日射量與裝置容量是影響太陽光發電效益之重要因素,關於裝置容量,過去已有多位學者提出不同之裝置容量推估模式,但大多以使用分區面積、地面層面積、人均面積來計算。然而,其建築物所造成之陰影效應,在評估屋頂型太陽光電發電潛力時,將會嚴重影響到裝置容量之多寡。為了有效計算建築物屋頂陰影區(被遮蔽區)之資訊,本研究基於屋頂可使用面積推估的需求,著眼於實用的角度,提出半自動化步驟進行建築物3D建模,利用Hillshade及Sun Shadow Volume工具模組,將建築物高程資料及不同時段的太陽方位角、高度角加入運算,產生逐時之日照陰影灰階度值,最後經由影像二值化程序,完成建築物屋頂陰影區之計算。
      本研究推估臺灣本島屋頂型太陽光電裝設潛力約為12,428.5MW,全年總發電量達15,423.75GWh。依日射量將臺灣區分為:豐日照區、高日照區、中日照區三類。其中豐日照區每瓩年發電量為1,288~1,707度;高日照區每瓩年發電量為1,140~1,242度;中日照區每瓩年發電量為861~992度。此外本研究針對不同日照區及不同級距的屋頂型裝置容量計算其單位發電成本,研究結果顯示單位發電成本除了會隨設備規模擴大而下降外,亦會受到日射量的影響而有明顯變化。以裝置容量500瓩以上為例,年售電量為能源局設定標準1,250度時,單位發電成本每度為5.1309元,豐日照區單位發電成本每度為3.7572~4.9795元,高日照區單位發電成本每度為5.1639~5.6260元,中日照區單位發電成本每度為6.4653~7.4490元。
      目前政府統一以5.25%的平均資金成本率來施行躉購費率,未考慮到不同地區、不同日射量及日照時數,本研究以能源局公告之2014年之躉購費率、投資成本等資料,反推2014年第一期的太陽光電平均資金成本率:豐日照區為5.61%~9.30%、高日照區為4.18%~5.17%、中日照區為1.84%~2.65%,顯示發電量較低之中日照區,目前若大力推廣太陽光電將不符合經濟效益,而太陽能資源豐富的中南部地區(即豐日照區),宜將其列為替代能源重要產地,並加速太陽光電之裝設。

    Currently, because of extensive exploitation, fossil fuel is gradually becoming depleted and global warming issues are increasing. Therefore, numerous countries are concerned about fossil fuel. All nations must develop alternative energy resources to reduce the potential risk of exhausting the available fossil fuel energy supply and resolve environmental degradation. Taiwan is located in the subtropical zone where sunlight is strong and thus developing solar energy is viable. The amount of sunlight and installed power capacity are crucial factors that influence solar photovoltaic (PV) efficiency. Among domestic and international studies, numerous scholars have proposed various installed power capacity estimation modes, which typically calculate areas based on subfields, ground floors, or per capita. However, an evaluation of the potential of solar PV power generation on rooftops indicated that the shadow effect caused by building structures substantially influences the amount of installed power capacity.
    This study aims to effectively compute the shadow areas (shaded areas) on rooftops. From a practical perspective, this study performed architectural 3D modeling using a semi-automated procedure to estimate available rooftop areas. By using the hill shade and sun/shadow volume modules, the buildings’ elevation data and the solar azimuth and altitude angles at different hours were calculated to obtain the hourly sun/shade grayscale values. The grayscale values were then integrated into binary images to calculate the shadow areas on rooftops.
    In Taiwan, the installed power capacity for rooftop photovoltaic is estimated to be approximately 12,428.5 MW and the annual gross generation is approximately 15,423.75GWh. Estimates from economic assessments have shown that regardless of the installed power capacity bracket (range) and sunshine area, all unit power-generation costs exceeded the NT$3.66/kWh for gas-fired power expended by the Taiwan Power Company from public purchases, demonstrating the relative high cost of photovoltaic power generation.
    This study estimated that the maximum and minimum annual power generation volume per kW in rich solar radiation is 1,707 kWh and 1,288 kWh, in high solar radiation is 1,242 kWh and 1,140 kWh, in medium solar radiation is 992 kWh and 861 kWh, respectively. A comparison of the maximum power generation volume in rich solar radiation and the minimum power generation volume in medium solar radiation showed a difference of 846 kWh; thus, central and southern regions of Taiwan (i.e., rich solar radiation), where sunshine is abundantly available, may be selected as key production sites for alternative energy to promote and install a solar photovoltaic system.
    This study estimated the average capital cost rates of photovoltaic systems in the first term of 2014; the results were 5.610%–9.302%, 4.177%–5.174%, and 1.840%–2.648% for rich, high, and medium solar radiation, respectively. Currently, the Taiwanese government charges the tariffs for renewable energy at a unified average capital cost rate of 5.25% without considering factors such as the location, insolation amount, and sunshine hours, which may render installations of photovoltaic systems in low power generation areas unprofitable.Based on the results, this study suggests that the governments should make relevant adjustments according to locations, thereby contributing to the welfare of the public. Related industries may also develop photovoltaic technologies to engender investments and production and promote photovoltaic systems and their effectiveness in providing energy, environmental, and industrial benefits.

    TABLE OF CONTENTS 摘要 II ABSTRACT III 誌謝 V TABLE OF CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objectives and Content 5 1.3 Literature Review 7 1.4 Scope, Limitations, and Assumptions 30 1.5 Research Process and Framework 38 Chapter 2 Photovoltaic Development 40 2.1 The Concept of Solar Energy 40 2.2 Relationship between architecture and solar energy 43 2.3 The development and trend of photovoltaic systems at home and abroad 44 2.4 PV subsidy policy at home and abroad 79 Chapter 3 Data Processing and Model Building 107 3.1 Introduction to Insolation Conditions 107 3.2 Shadow Analysis Algorithm 136 3.3 Introduction to the Geographic Information Systems 138 3.4 Input data items of modeling 141 3.5 Design of the Sun Shadow Model 142 3.6 Display of the Sun Shadow Model in ArcGIS 174 3.7 Economic Evaluation Indicators 183 Chapter 4 The Assessment of Rooftop Photovoltaic Potentials in Taiwan 185 4.1 The Estimated Installed power capacity Potentials of Rooftop Photovoltaic in Taiwan 185 4.2 Cost Analysis of Rooftop PV in Taiwan 211 Chapter 5 Conclusions and Recommendations 218 5.1 Conclusions 218 5.2 Recommendations 222 REFERENCES 224   LIST OF TABLES Table 1 Taiwan’s Development Potential Regarding PV Resources 18 Table 2 Ministry of Economic Affairs Solar Energy Development Goals (Bureau of Energy 1999) 19 Table 3 Explanation of Taiwan’s PV Development Potential (Chen et al. 2010) 20 Table 4 Explanation of Taiwan’s PV Development Potential (Bureau of Energy 2010) 22 Table 5 Greenhouse Gas Emissions by Energy Type and Life Cycle Assessment 29 Table 6 Comparison of Generated Power by Energy Type 30 Table 7 Solar Elevation Angle and Azimuth Angle in Tainan During the Four Seasons 31 Table 8 Average Hours of Sunshine by Month in Tainan (1981–2010) 31 Table 9 Comparison of solar cell materials and performances 42 Table 10 The photovoltaic template specifications 44 Table 11 Changes of German solar power buy-back prices 52 Table 12 Green energy Sunrise program - the photovoltaic industrial policy 62 Table 13 Projection of Taiwan renewable energy installation capacity (MW) 64 Table 14 The advantages and disadvantages of photovoltaics 66 Table 15 The SWOT analysis of our country's photovoltaic technology 68 Table 16 Solar cell technology level - Taiwan vs. Advanced Countries 69 Table 17 Solar power development history of Taiwan 71 Table 18 Categories of main international promotion policies for renewable energy 80 Table 19 Characteristics of RPSand FIP and analysis of their disadvantages 81 Table 20 PV subsidy description 82 Table 21 PV subsidy policy development in different countries in 2010 83 Table 22 Feed-in Tariff regulations 89 Table 23 PV FIT rate from 2009 - 2014 94 Table 24 Parameters collection of PV usage in 2009 96 Table 25 Parameters collection of PV usage in 2010 96 Table 26 Parameters collection of PV usage in 2011 97 Table 27 Parameters collection of PV usage in 2012 98 Table 28 Parameters collection of PV usage in 2013 99 Table 29 Parameters collection of PV usage in 2014 100 Table 30 PV cumulative installed power capacity (MWp) from the previous years 103 Table 31 Taiwan monthly cumulative installed PV capacity (MWp) 104 Table 32 IEA Solar Alliance States’cumulative installed PV capacity (MW) 105 Table 33 Table of comparison of major solar energy development policies in different countries 106 Table 34 Taiwan Solar Radiation Database 115 Table 35 Recommended Indicators for Interior Insolation Time 119 Table 36 Yongkang Station’s 2011 Daily Global Solar Radiation Data 120 Table 37 Yongkang Station’s 2011 Daily Insolation Duration Data 122 Table 38 Yongkang Station’s Monthly Average Duration of Insolation and Temperature Between 1981 and 2010 124 Table 39 Taiwan Sunlight Duration 126 Table 40 Hourly Global Solar Radiation Data for Yongkang Station in 2011 127 Table 41 Hourly Global Solar Radiation Ratio for Each Month in 2011 at Yongkang Station 128 Table 42 Latitudes of Key Cities in Taiwan 133 Table 43 The Declination During Taiwan’s 24 Solar Terms 134 Table 44 Grayscale Grid Classification and Frequency (Partial) 164 Table 45 Rooftops areas suitable for bright spots in Yongkang District (Unit: Square Meter) 172 Table 46 Districts and Areas in Urban Planning Districts in 2011 186 Table 47 Assessment Process, Formulas, and Data of Rooftop PV Potential in Taiwan 188 Table 48 Developmental Potential of PV Resources in Taiwan 190 Table 49 Installable Area Ratio of Rooftop PV in Yongkang District, Tainan City 192 Table 50 Installable Area Ratio of Rooftop PV 193 Table 51 Estimated Proportion of Installed power capacity of Rooftop PV in Taiwan 194 Table 52 Generating Capacity of Rooftop PV of Yongkang District in Tainan City (partial data) 195 Table 53 Simulation of Electricity Generating Capacity of Yongkang District in Tainan City 2009-October 2013 (GWh) 196 Table 54 Solar Radiation Zoning in Taiwan 199 Table 55 Installed power capacity and Generating Capacity of Rooftop PV in Taiwan Counties and Cities 207 Table 56 Parameters for Calculating Initial Implementation Cost of PV Systems 2009-2014 208 Table 57 Annual Average PV System Installed power capacity in Taiwan (MWp) 209 Table 58 Identified Capacity (kW) of Installed PV Systems 2009-2014 209 Table 59 Estimated Initial Installation Costs of PV Systems and Renewal Energy Purchase Rates by Installed power capacity Intervals 211 Table 60 Taiwan Household Electricity Rates 212 Table 61 Unit Generating Cost of Rooftop PV (2014 Phase 1) in the equivalent cash flows 213 Table 62 Average Capital Cost Rate 2014 Phase 1 216   LIST OF FIGURES Figure 1 Installed power capacity of Renewable Energy by Equity Group in Germany 2012 2 Figure 2 World Electricity Generation by Fuel 3 Figure 3 Effects of Global Warming 3 Figure 4 Stand-alone Solar Energy Storage System 14 Figure 5 Schematic Diagram of Stand-alone Power Generation Systems 15 Figure 6 Hybrid PV System 16 Figure 7 Schematic Diagram of Hybrid Power Generation System 16 Figure 8 Grid-connected PV Systems 17 Figure 9 Schematic Diagram of Grid-connected Systems 18 Figure 10 PV Panels Installed with a Tilt Angle of 23.5° 35 Figure 11 Research Flowchart 38 Figure 12 The installation angles, directions and efficiencies of photovoltaic templates 43 Figure 13 Solar energy related policies 45 Figure 14 The R&D investments on renewable energy technology by OECD countries 47 Figure 15 Growth trend of the global solar energy installation capacities 48 Figure16 The cost variations of photovoltaic systems of leading countries 50 Figure17 The cost variations of photovoltaic modules of leading countries 50 Figure18 The distribution of Taiwan photovoltaic installation quantities(a) and volumes(b) by year and type 59 Figure19 The global renewable energy growth rate 66 Figure20 The production values of Taiwan photovoltaic industry 74 Figure21 Taiwan photovoltaic industry production capacity 75 Figure22 statistical chart of the incremented amount of PV device from 2000 to 2010 in Taiwan. 77 Figure23 Change in global energy capacity increased (GW) 86 Figure24 Changes of the global new renewable resource capacity(GW) 87 Figure25 Distribution of energy grid loading and storage need (assuming wind power change of 15%) 88 Figure26 Taiwanese parallel system of PV power generator system 102 Figure27 cumulative installed PV capacity (MWp) from the previous years 104 Figure28 Solar Radiation on the Earth’s Horizontal Surface 109 Figure29 Global Insolation Distribution 114 Figure30 The Earth’s True Motion 117 Figure31 The Sun’s Apparent Motion 117 Figure32 Yongkang Station’s Monthly Average Global Solar Radiation for 2009–2013(MJ/m2) 123 Figure33 Yongkang Station’s Total Global Solar Radiation in October from 2009–2013(MJ/m2) 124 Figure34 Yongkang Station’s 2011 Monthly Insolation Duration Rate and the Average Monthly Insolation Duration Rate for the Period of 1981–2010 125 Figure35 Ratio of Hourly Horizontal Surface Direct Radiation Each Month 128 Figure36 Hourly Horizontal Surface Direct Radiation Ratio during Spring 129 Figure37 Hourly Horizontal Surface Direct Radiation during Summer 129 Figure38 Hourly Horizontal Surface Direct Radiation Ratio during Fall 129 Figure39 Hourly Horizontal Surface Direct Radiation Ratio during Winter 130 Figure40 Elevation Angle of the Sun 131 Figure41 Solar Azimuth Angle 132 Figure42 Declination Illustration 133 Figure43 Building Heights in the Yongkang District of Tainan City (unit: meter) 143 Figure44 Sun Shadow Calculation Process 144 Figure45 Difference between Polygon Features and Point Features 145 Figure46 Sun Elevation and Azimuth Angles of the Four Seasons in Taiwan 146 Figure47 The Solar Azimuth Angle Used in the Hillshade Diagram 147 Figure48 The Sun’s Elevation Angle Used in the Hillshade Diagram 147 Figure49 Ray Tracing Method 147 Figure50 Shadowed Areas with Different Sun Angles 149 Figure51 3×3 Grid 151 Figure52 Input Elevation Grid 153 Figure53 Building Zoning Layer of Yongkang District in Tainan City 155 Figure54 Partial Enlargement of the Building Zoning Layer of Yongkang District in Tainan City 156 Figure55 Raster Grayscale Grids Converted from Polygon Features for Different Time Periods during Summer Solstice 157 Figure56 Raster Grayscale Grid Converted from Polygon Features for Different Periods during Spring and Autumn Equinox 159 Figure57 Raster Grayscale Grids Converted from Polygon Features for Different Periods during Winter Solstice 161 Figure58 Grayscale Value at 09:00 during Summer Solstice (Red Colored Value is the Building Height) 161 Figure59 Grayscale Value at 12:00 during Summer Solstice (Red Colored Value is the Building Height) 162 Figure60 Values in the Research Grayscale Grid 163 Figure61 Binarization Segmentation 165 Figure62 Block Diagrams of Binarized Image Analysis 167 Figure63 Binarization Analysis of an 8-bit Image 168 Figure64 Result of the Binarization of an 8-bit Image 168 Figure65 Image Showing an Uneven Light Field 169 Figure66 The Binarization Condition When the Image Light Field is Uneven and Only One Specific Threshold Value is Obtained 170 Figure67 The Binarization of Dynamic Threshold Value when the Image Light Field is Uneven 171 Figure68 Distribution of Shadow Grayscale Values of the Rooftops in Tainan City, Yongkang District During Summer Solstice, Spring Equinox, Autumn Equinox, and Winter Solstice 172 Figure69 Distribution of Shadow Grayscale Values of the Rooftops in Tainan City, Yongkang District During Summer Solstice 173 Figure70 Distribution of Shadow Grayscale Values of the Rooftops in Tainan City, Yongkang District During Summer Solstice at 06:00. 173 Figure71 Rooftops Areas of Tainan City, Yongkang District, Suitable for bright spots During Summer Solstice, Spring Equinox, Autumn Equinox, and Winter Solstice 174 Figure72 Managing Process of ArcGIS Sun Shadow Display 175 Figure73 Partial Point Features of Yongkang District, Tainan City 177 Figure74 Polygon Features of Partial Point Feature Overlays in Tainan City, Yongkang District 177 Figure75 Partial Point Features and Building Volumes of Yongkang District, Tainan City 178 Figure76 Building Distribution of an Area in Yongkang District, Tainan City 178 Figure77 Stereo Display of Building Volume Displayed in ArcGIS 179 Figure78 2D Insolation and Shadow Display in ArcGIS (Spring Equinox) 180 Figure79 2D Insolation and Shadow Display in ArcGIS (Summer Solstice) 181 Figure80 2D Insolation and Shadow Display in ArcGIS (Autumn Equinox) 182 Figure81 2D Insolation and Shadow Display in ArcGIS (Winter Solstice) 183 Figure82 Cash Flow Graph 184 Figure83 Developmental potential of PV resources in Taiwan 192 Figure84 Installable area ratio of rooftop PV in Yongkang District, Tainan City. 193 Figure85 365-day simulation of electricity generating capacity of Yongkang District in Taiwan City in 2011. 196 Figure86 Simulation of electricity generating capacity of Yongkang District in Tainan City 2009-October 2013 (GWh) 197 Figure87 Solar Radiation Zoning in Taiwan 200 Figure88 Taiwan sunlight distribution map (kWh/m2/day) 201 Figure89 Taiwan global solar radiation map (cal/cm2/day) 202 Figure90 Taiwan sunlight map (hourly) 203 Figure91 Taiwan meteorological stations on a Voronoi diagram 205 Figure92 Identified Capacity (%) of Installed PV Systems 2009-2014 210

    REFERENCES
    A. Chinese
    1. 卜毅(1994),建築日照設計,台北:科技圖書股份有限公司。
    2. 王孟傑(2011),2010年太陽光電產業回顧與展望,工業技術研究院產業經濟與趨勢研究中心。
    3. 王炳忠(1988),太陽能輻射的測量與標準,科學出版社。
    4. 中華民國行政院主計處,統計資料,2009年8月。
    5. 行政院經濟部,綠色能源產業旭升方案,2009年10月。
    6. 江哲銘(1997),建築物理,三民書局。
    7. 江斌、黃波、陸鋒(2002),GIS環境下的空間分析和地學視覺化,高等教育出版社。
    8. 李友富(1996),國內太陽能光發電系統介紹,工業材料119期,頁135-142。
    9. 李文興(1996),國內太陽熱能研發概況,經濟部能源委員會,太陽能學刊第一卷第一期。
    10. 吳明威(2004),太陽輻射能量在建築初步規劃設計上的應用-以恆春地區為例,淡江大學建築所碩士論文。
    11. 何孟穎、施宇承、陳婉如、林江財、李陸玲、刁維光、林江財、熊谷秀、陳以禮、光焱科技(2012),2012年太陽光電市場與產業技術發展年鑑—第三章臺灣太陽光電產業發展,財團法人光電科技工業協進會。
    12. 何明錦,歐文生,陳建富(2006),臺灣太陽能設計用標準日射量與相關檢測規範之研究,內政部建築研究所協同研究報告。
    13. 余政達,楊明浩,李英裕,蔡宏達(2006),地方再生能源之潛力與經濟評估。中華民國環境保護學會會誌,第29卷,第1期,頁11-28。
    14. 呂威賢、李欣哲(2005),先進國家發展再生能源經驗之借鏡,太陽能及新能源月刊,第十卷,第一期,頁39-43。
    15. 李建興、陳耀銘、吳旭晉(2003),以遺傳演算法與模擬退火法計算固定式太陽能電池板的最佳安裝角度,能源季刊,第三十三卷,第三期,頁112-118。
    16. 李朝奎、朱慶、隋松林、韓用順(2004),基于3DCM的日照分析模型研究,第四屆海峽兩岸測繪發展研討會論文集,頁287-293。
    17. 李璟柏(2004),太陽能輔助熱泵熱水器性能提升設計與評估方法研究,臺灣大學機械工程學研究所博士學位論文。
    18. 林再遷、吳榮章、朱明昭、鄒若齊、張士桐、李輝隆、伏和中、童遷祥、陳逸偵、黃啟原、唐自標、丁原智、胡毅、賴錦文(2012),臺灣鑛冶工業之進展(上),鑛冶,第五十七卷第二期,頁71-118。
    19. 林典凱(2000),全天空太陽輻射能量與照度模型之建立-以淡水地區為例,淡江大學建築所碩士論文。
    20. 林師模(2011),太陽光電及生質酒精產業之技術經濟及成本效益評估,行政院原子能委員會委託研究計畫研究報告。
    21. 林憲德、黃國倉(2005),台灣TMY2標準氣象年之研究與應用,建築學報,53期,頁79-94。
    22. 芦村昌士、宮川忠明、木田寬治(1996),噴水に用いた太陽光發電システムの計測評價,日本建築學會大會學術演講梗概集。
    23. 邵怡誠(2007),空載光達資料中地面點選取及房屋偵測,國立中央大學土木工程研究所博士學位論文。
    24. 邱茂林、許志詳、胡弘才(1994)編譯,建築應用電腦化,胡氏圖書出版社。
    25. 邱議賢(2013),太陽能電池發電與市電併聯,科學發展,487期,頁64-67。
    26. 查丁壬(2000),太陽能電池的應用與技術發展,零組件雜誌,頁118-123。
    27. 胡宇正(1993),傳統影像處理結合類神經網路系統之設計與應用,國立中央大學光電(科學)研究所博士論文。
    28. 范綱樑(2003),臺灣地區全天空建築直射日射量應用研究-以台北、台中、台南、恆春似地為例,淡江大學建築所碩士論文。
    29. 浜川圭弘、桑野幸德(1996),太陽エネルギー工学:太陽電池,初版3刷,培風館,頁1-4。
    30. 徐國昌、黃柏鈞、黃茂庭、林偉民、曾美惠(2013),臺灣太陽光電系統發電量分析探討,臺灣旅沙電力協會會刊,第十四期。
    31. 高翊倫(2009),建構臺灣地區太陽光電系統之發電量預測模型,國立交通大學工業工程與管理系所碩士論文。
    32. 高筱爵、張義鋒(1980)譯,太陽能之應用,徐氏基金會出版。
    33. 徐翠華(2003),臺灣地區太陽輻射及太陽光電潛力之研究,國立臺灣師範大學地理研究所碩士論文。
    34. 唐榮錫(2005),計算機圖學,網奕資訊科技股份有限公司。
    35. 張子文(2001),太陽電池應用於建築上之研究,國立成功大學建築學系碩士論文。
    36. 張世杰(2009),太陽能技術在建築物應用之研究,雲林科技大學,營建與物業管理研究所碩士論文。
    37. 張金城(2002),全天空太陽輻射能量與可及性漫射光照度迴歸模型之建立-以淡水地區為例,淡江大學建築所碩士論文。
    38. 陳心怡(2011),臺灣太陽能補助政策情境分析,國立交通大學,環境工程系所碩士論文。
    39. 陳炯堯(2012),創新綠能科技擴散之研究-以臺灣太陽光電發展為例,國立中山大學企業管理學系研究所博士學位論文。
    40. 陳明君、王孟傑(2009),日本太陽光電補助新制-制度探討篇,工業技術研究院產業經濟與趨勢研究中心。
    41. 陳育珩(2013),我國新及再生能源電力發展政策工具之效益評估,國立成功大學資源工程學系博士論文。
    42. 陳芃(2003),歷史的主角 現代的必須——煤炭在臺灣,經濟部能源局2003年04月能源報導,頁8。
    43. 陳啟中(2000),建築物理概論,詹氏書局。
    44. 陳邦安(1987),臺灣地區建築日影之電腦模擬與分析,成功大學建築研究所碩士論文。
    45. 陳逸倫(2001),電腦模擬自然採光與外部遮陽節約能源綜合評估之研究,淡江大學建築所碩士論文。
    46. 陳維新(2012),能源概論,高立圖書。
    47. 陳儀安(2012),以日照陰影觀點探討都市建物之太陽光電設置潛力-以台南市中西區一街廓為例,成功大學都市計劃學系碩士論文。
    48. 陳錦嫣、黃國展(2007),GIS與決策分析ArcGIS入門與進階。台北:新京文開發出版股份有限公司。
    49. 莊嘉琛,1997,太陽能工程-太陽電池篇,全華圖書出版。
    50. 莊豐光(2012),臺灣太陽光電產業政策決策模式之研究,國立交通大學科技管理研究所科技管理研究所博士學位論文。
    51. 康志堅(2008),檢視臺灣太陽光電產業競爭力,產業與管理論壇,第十卷,第一期,頁59-71。
    52. 康志堅、張蕎韻(2009),2010~2012年全球太陽光電市場商機探索,工業技術研究院產業經濟與趨勢研究中心。
    53. 梁啟源(2005),臺灣空氣污染之社會外部成本與台電公司空污防治成本效益分析,台電工程月刊,681期,頁26-39。
    54. 臺灣能源及電力業之挑戰與機會(2013),專題報告,財團法人中技社。
    55. 黃文雄(1978),太陽能之應用及理論,協志工業叢書。
    56. 黃秉鈞(1996),從國外經驗論我國未來太陽光電發展策略,新黨反核四白皮書研究報告。
    57. 黃信雄(1996),國內太陽能產業動態,工研院能資所,太陽能學刊,第一卷,第一期。
    58. 黃信雄(1996),因應氣候變化綱要公約的我國太陽能應用策略,太陽能學刊,第一卷,第二期。
    59. 黃偉倫(2002),分散型電力技術的應用,經濟部能源局2002年02月能源報導,頁31。
    60. 黃鋰(2010),日本隊住宅用太陽能發電補助方式與現況分析,拓墣產業研究所焦點報告。
    61. 黃韻勳(2007),考量發電風險之電力供給規劃研究—再生能源範例分析,國立成功大學資源工程學系博士論文。
    62. 單啟文(2009),太陽光電板南向最佳傾角及緯度關係之研究與驗證,國立臺灣科技大學建築系博士學位論文。
    63. 曾淑美(2003),建築日影變化對周圍場域的影響-以台北101大樓春分時節為例,銘傳大學媒體空間設計所碩士論文。
    64. 楊淑慧(2006),太陽鍊金術:透視全球太陽光電產業,財訊出版社股份有限公司,頁8。
    65. 鄒智純(2011),我國再生能源發展條例立法過程與法案內容之研究,臺灣大學政治學研究所碩士論文。
    66. 溫麗琪、李盈嬌(2009),我國徵收能源稅可能性分析,中華經濟研究院。
    67. 經濟部能源局,2012年能源產業技術白皮書,2013年10月。
    68. 經濟部能源委員會,再生能源及淨潔能源研究開發規劃總報告,1999年5月。
    69. 經濟部能源科技研究發展計畫2011年度執行報告(修正稿)再生能源躉購及基金費率研析計畫(第一年度),2011年12月。
    70. 熊谷秀(2005),我國太陽光電推廣及陽光電城計畫執行現況,太陽能及新能源月刊,第十卷,第一期,頁19-22。
    71. 葛復光(2010),我國邁向低碳經濟之電源規劃思維,台電工程月刊,747期,頁89-110。
    72. 歐文生,何明錦,陳瑞鈴,陳建富,羅時麒(2008),臺灣太陽能設計用標準日射量之研究,建築學報,第64期,頁103-118。
    73. 蔡宏達(2006),台灣地區太陽能利用之潛力與效益評估,立德管理學院資源環境研究所碩士論文。
    74. 蔣佳霓(2012),3D GIS在都市建築之應用-以太陽光電模板最佳架設位置為例,國立臺灣大學地理環境資源學系碩士論文。
    75. 蔣寬和、梁添富、吳英偉(1994)譯,Leland T. Blank, Anthony J. Tarquin著,工程經濟學,美商麥格爾•希爾國際股份有限公司,頁41-43。
    76. 鄭婉真(2012),再生能源發展規劃及搭配儲能必要性,工研院電子報,第10104期。
    77. 劉明德、徐玉珍(2012),臺灣亟需有遠見的再生能源政策與做法—德國經驗的啟示,公共行政學報43期,頁127-150。
    78. 盧建成、詹錢登(2011),運用ArcMap區域統計法及遙測影像分析農地利用及灌溉需水量,農業工程學報,57(2),頁1-15。
    79. 魏玉泉(2007),萬家燈火太陽能--一個從不寄帳單的太陽電力公司,台電工程月刊,532期,頁28-31。
    80. 藤井石根(1993),太陽エネルギー利用技術:太陽光、熱の有效利用,初版3 刷,工業調查會,頁17-19。
    81. 嚴坤龍、郭雅華、白明憲(2008),臺灣太陽光電發電系統設置與發電量統計,太陽能及新能源月刊,第十三卷,第二期,頁25-28。

    B. English
    1. Adurodija F.O.(1998), The market potential of photovoltaic systems in Nigeria. Solar Energy, 64 (4-6), pp. 133-139.
    2. Athenon, Peter, Weiler, Kevin, and Greenberg, Donald(1978), Polygon Shadow Generation, SIGGRAPH proceedings, pp. 275-281.
    3. Bergamasco, Luca; Asinari, Pietro(2011), Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy), Solar Energy Volume: 85, Issue: 5, May, 2011, pp. 1041-1055.
    4. Bernal-Agustín, José L.; Dufo-López, Rodolfo(2006), Economical and environmental analysis of grid connected photovoltaic systems in Spain. Renewable Energy, 31(8), pp. 1107-1128.
    5. Bezdek, R. H., and Wendling, R. M.(2006),The US energy subsidy scorecard. Issues in Science and Technology, 22(3), pp. 83-85.
    6. Bhandari, Ramchandra; Stadler, Ingo(2009),Grid parity analysis of solar photovoltaic systems in Germany using experience curves, Solar Energy Volume: 83, Issue: 9, September, 2009, pp. 1634-1644.
    7. Bouknight, J., and Kelly, K.(1970), An algorithm for producing halftone computer graphics presentations with shadows and movable light sources, SJCC, AFIPS, Vol 36, pp. 1-10.
    8. Burrough, P. A. and McDonell, R. A.(1998),Principles of Geographical Information Systems, Oxford University Press, New York, pp. 190.
    9. Butler, Lucy; Neuhoff, Karsten(2008),Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renewable Energy Volume: 33, Issue: 8, August, 2008, pp. 1854-1867.
    10. Chang, J. H.(1961), Microclimate of sugar cane, Hawaiian Planters’ Record, 56 (3), pp. 3-5.
    11. Chen Falin, Lu Shyi-Min, Tseng Kuo-Tung, Lee Si-Chen, Wang Eric (2010), Assessment of renewable energy reserves in Taiwan, Renewable and Sustainable Energy Reviews, Volume 14, Issue 9, December 2010, pp. 2511–2528.
    12. Choi, Yosoon; Rayl, Jeffrey; Tammineedi, Charith;Brownson, Jeffrey R.S.(2011), PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas, Solar Energy Volume: 85, Issue: 11, November, 2011, pp. 2924-2939.
    13. Chou, K.T.; Liou, H.M.(2012), Analysis on energy intensive industries under Taiwan's climate change policy, Renewable and Sustainable Energy Reviews, Volume: 16, Issue: 5, June, 2012, pp. 2631-2642.
    14. Cook, Robert, Porter, Thomas, and Carpenter, Loren(1984), Distributed Ray Tracing, SIGGRAPH proceedings, pp. 137-145.
    15. Crow, Franklin, "Shadow Algorithms for Computer Graphics(1977), SIGGRAPH proceedings, pp. 242-248.
    16. Gong, Xiangyang; Kulkarni, Manohar(2005), Design optimization of a large scale rooftop photovoltaic system , Solar Energy Volume: 78, Issue: 3, pp. 362-374.
    17. Gregg, A., Parker, T. and Swenson, R.(2005), A “real world” examination of PV system design and performance, Presented at Photovoltaic Specialist Conference and Exhibition, Florida, USA.
    18. Hossain Mondal, Md. Alam(2010), Economic viability of solar home systems: Case study of Bangladesh, Renewable Energy Volume: 35, Issue: 6, June, 2010, pp. 1125-1129.
    19. Izquierdo, Salvador; Rodrigues, Marcos; Fueyo, Norberto(2008), A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations , Solar Energy Volume: 82, Issue: 10, pp. 929-939.
    20. Izquierdo, S., C. Montañés(2011), Roof-top solar energy potential under performance-based building energy codes: The case of Spain. Solar Energy 85(1), pp. 208-213.
    21. Japan Solar Energy Society(1985), Solar Energy Utilization Handbook, Japan Solar Energy Society, Tokyo.
    22. John A. Duffie, William A. Beckman(2006), Solar engineering of thermal processes, Hoboken, NJ : Wiley, c2006.
    23. Kaldellis, J. K., EI-Samani, K., and Koronakis, P.(2005), Feasibility analysis of domestic solar water heating systems in Greece. Renewable Energy, 30 (5), pp. 659-682.
    24. Klessmann, Corinna; Nabe, Christian; Burges, Karsten(2008), Pros and cons of exposing renewables to electricity market risks—A comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy Volume: 36, Issue: 10, October, 2008, pp. 3646-3661.
    25. Masini, A., and Frankl, P.(2002), “Forecasting the diffusion of photovoltaic systems in southern Europe: A learning curve approach.” Technological Forecasting and Social Change, 70(1), pp. 39-65.
    26. Mennel T. and Scatasta S.(2010), Comparing Feed-In-Tariffs and Renewable Obligation Certificates - a Real Option Approach, The 2010 International Energy Workshop, 21-24, June, Stockholm.
    27. Nawaz, I., and Tiwari, G.N.(2006), Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level. Energy Policy, 34(17), pp. 3144-3152.
    28. Nelson L. Max(1986), Atmospheric Illumination and Shadows, ACM Volume, Number 4, pp.117-124.
    29. Nemet, G. F., & Baker, E.(2009), Demand subsidies versus R&D: comparing the uncertain impacts of policy on a pre-commercial low-carbon energy technology. Energy Journal, 30(4), pp. 49-80.
    30. Nguyen, Ha T.; Pearce, Joshua M.(2012), Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale, Solar Energy Volume: 86, Issue: 5, May, 2012, pp. 1245-1260.
    31. Nishita, Tomoyuki, Okamura, Isao, and Nakamae, Eihachiro(1985), Shading Models for Point and Linear Sources, ACM Trans-actions on Graphics, Vol 4 no. 2, pp. 124-146.
    32. Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G.(2010), Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain) , Renewable and Sustainable Energy Reviews Volume: 14, Issue: 7, pp. 2122-2130.
    33. Otsu, N.(1979), A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man Cybernet SMC-9 (1), pp. 62–66.
    34. Ramadhan, Mohammad; Naseeb, Adel(2011), The cost benefit analysis of implementing photovoltaic solar system in the state ofKuwait, Renewable Energy Volume: 36, Issue: 4, April, 2011, pp. 1272-1276.
    35. Sanden, B. A., and Azar, C.(2005), Near-term technology policies for long-term climate targets economy wide versus technology specific approaches. Energy Policy, 33(12), pp. 1557-1576.
    36. Sayigh, A. A. M.(1979), Solar Energy Application in Buildings, New York: Academic Press.
    37. Seng, L. Y., Lalchand, G., and Lin, G. M. S.(2008), Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia. Energy Policy, 36(6), pp. 2130-2142.
    38. Van der Zwaan, B., & Rabl, A.(2003), Prospects for PV: a learning curve analysis. Solar Energy, 74(1), pp. 19-31.
    39. Vardimon, Ran(2011), Assessment of the potential for distributed photovoltaic electricity production in Israel, Renewable Energy Volume: 36, Issue: 2, February, 2011, pp. 591-594.
    40. Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M.(2010), Quantifying rooftop solar photovoltaic potential for regional renewable energy policy , Computers, Environment and Urban Systems Volume: 34, Issue: 4, pp. 345-357.
    41. Williams, Lance(1987), Casting Curved Shadows on Curved Sur-faces, SIGGRAPH proceedings, pp. 270-274.
    42. Whitted, Turner(1980), An Improved Illumination Model for Shaded Display, Communications of the ACM, Vol 23, pp. 343-349.
    43. Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S.(2010), Shading and electrical features of a photovoltaic array mounted inside the roof of an east–west oriented greenhouse , Biosystems Engineering Volume: 106, Issue: 4, pp. 367-377.
    44. Yue, Cheng-Dar; Huang, Guo-Rong(2011), An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis, Energy Policy Volume: 39, Issue: 12, December, 2011, pp. 7988-8002.
    45. Zhang, Z., and Ying, L.(2009), Application of GIS combining with limits of voronoi diagram in socioeconomic factor of agricultural land grading. Computer and Computing Technologies in Agriculture II, 293, pp. 423-430.

    C. Website
    1. 工研院太陽光電資訊網,http://solarpv.itri.org.tw/aboutus/sense/category.asp
    2. 工業技術研究院-能源與資源研究所,http://www.erl.itri.org.tw/
    3. 太陽光發電示範系統資訊網,http://210.69.121.54/moea/Docs/index.html
    4. 太陽光電示範系統推廣網站,http://solarpv.itri.org.tw/memb/main.aspx
    5. 中央氣象局網站,臺灣四季仰角與方位角,http://www.cwb.gov.tw/V7/astronomy/cdata/season.htm
    6. 天然氣替代能源 恆春外海發現(2006),再生能源電子報,8月第2旬,工業技術研究院能源與環境研究所發行,http://www.re.org.tw/re2/epaper/9508b/index.aspx
    7. 內政統計年報,http://sowf.moi.gov.tw/stat/year/list.htm
    8. 台電公司全球資訊網站,http://www.taipower.com.tw
    9. 行政院主計處,http://www.dgbas.gov.tw/mp.asp?mp=1
    10. 防災教育數位平台,http://disaster.edu.tw/
    11. 能源資訊網,http://emis.erl.itri.org.tw/index.asp
    12. 能源統計月報-主要能源指標,經濟部能源局,http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142,2013.10.22
    13. 設置再生能源設施免請領雜項執照標準(發布日期:2012-09-17),http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=10563&catid=30&Itemid=100
    14. 經濟部能源局,http://www.moeaboe.gov.tw/
    15. 經濟部能源局—能源文宣手冊,http://www.moeaboe.gov.tw/About/webpage/book1/page0.htm
    16. 綠能趨勢網,http://pv.energytrend.com.tw/knowledge/20120904-4894.html
    17. ESRI UserGuide,http://www.esri.com
    18. German citizens owned nearly half of installed solar PV in 2012(2013),SolarServer,http://www.solarserver.com/solar-magazine/solar-news/current/2013/kw44/german-citizens-owned-nearly-half-of-installed-solar-pv-in-2012.html
    19. IEA網站,http://www.iea.org
    20. IPCC網站,http://www.ipcc.ch
    21. NASA (2004),Surface meteorology and solar energy,http://eosweb.larc.nasa.gov/sse Jun./02/2011
    22. Teens網路教育園區的網站,http://www2.inservice.edu.tw/EPaper/ep2/indexView.aspx?EID=566
    23. Voronoi Diagram,http://www.csie.ntnu.edu.tw/~u91029/VoronoiDiagram.html

    下載圖示 校內:2019-01-24公開
    校外:2019-01-24公開
    QR CODE