簡易檢索 / 詳目顯示

研究生: 林建文
Lin, Chien-Wen
論文名稱: 基於慣性感測器之平衡分析系統及其應用於阿茲海默氏症之評估
Inertial-Sensor-Based Balance Analysis System for Patients with Alzheimer’s Disease
指導教授: 詹寶珠
Chung, Pau-Choo
共同指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 72
中文關鍵詞: 平衡分析阿茲海默氏症慣性感測器認知功能評估支持向量機
外文關鍵詞: Balance analysis, Alzheimer’s disease, Inertial sensor, Cognitive function assessment, Support vector machine
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於開發一基於慣性感測器之平衡分析系統,並將其應用於阿茲海默氏症之徵狀評估。首先,本論文設計靜/態動態平衡測試來測試受測者的平衡能力;同時,本論文發展穿戴式慣性感測裝置並將其配戴於受測者腰部、腳踝及腳背上偵測靜/態動態平衡測試時所產生的運動訊號,並透過訊號處理得到受測者在執行測試時維持平衡的能力。接著,本論文提出認知功能評估方法,其可以擷取慣性感測器所偵測到運動訊號的特徵,並依據擷取後的特徵及受測者傳統認知功能測驗分數來建立映射回歸模型,並藉此來建立受測者平衡能力與認知功能的關係。此外,本論文亦提出一基於支持向量機之阿茲海默氏症自動分類演算法,利用慣性感測器所偵測到運動訊號進行訊號前處理、特徵擷取、特徵正規化、特徵選取後,藉由支持向量機分類器來將阿茲海默氏症患者和正常人區分。最後,經由結果顯示,本論文所提出之認知功能評估方法中其平衡能力與認知功能呈現高度相關性(相關係數>0.7);並且在阿茲海默氏症辨識方面其可達到82.76%的準確率。透過上述結果可以驗證本論文所提出平衡分析系統之有效性。我們希冀此論文中所提出之靜/態動態平衡分析系統在未來能夠成為輔助醫師在臨床上診斷阿茲海默氏症之工具。

    This thesis presents an effective inertial-sensor-based balance analysis system for patients with Alzheimer’s disease. At first, we designed accurate balance testing procedures for examining participants’ balance ability. In the meanwhile, the signals generated from balance movements can be acquired via the use of a wearable device mounted on participants’ waist, ankles, or feet. Next, the proposed cognitive function assessment method was presented to establish the relationship between performance in balance tasks and cognitive function by using the parameters or features calculated from the inertial signals, consisting of signal preprocessing, parameter or feature generation, and cognitive function assessment. Afterward, we developed an automatic Alzheimer’s disease classification algorithm including signal preprocessing, feature extraction, feature normalization, feature selection, and support vector machine-based classifier to separate AD patients from healthy people. The results showed that cognitive function and balance ability appear to be highly related (correlation coefficient > 0.7). Furthermore, the average classification accuracy of the proposed automatic classification algorithm is 82.76%. Therefore, our experimental results have successfully validated the proposed balance analysis system. We expect the proposed inertial-sensor-based balance analysis system can identify diagnostic marker(s) for AD in the early stage.

    中 文 摘 要 I Abstract III 致謝 V Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Purpose of the Study 5 1.4 Organization of the Thesis 6 Chapter 2 Experimental Design 7 2.1 Neuropsychological Test Performance 8 2.1.1 Mini-Mental State Examination 8 2.1.2 Cognitive Abilities Screening Instrument 8 2.2 Apparatus 9 2.3 Experimental Design and Procedures 11 2.3.1 Procedure of Static Balance Test 11 2.3.2 Procedure of Dynamic Balance Test 13 Chapter 3 Balance Analysis for Assessment of Cognitive Function 15 3.1 Signal Preprocessing 16 3.1.1 Calibration of Inertial Sensors 16 3.1.2 Low-pass Filtering 18 3.2 Parameters Extracted from Static Balance Test 19 3.3 Parameters Extracted from Dynamic Balance Test 22 3.4 Assessment of Cognitive Function 30 Chapter 4 Automatic Alzheimer’s Disease Classification Algorithm 32 4.1 Signal Preprocessing 33 4.2 Feature Extraction 33 4.3 Feature Normalization 39 4.4 Feature Selection 40 4.5 Support Vector Machine-Based Classifier 43 Chapter 5 Experimental Results and Discussion 47 5.1 Participants 47 5.2 Statistical Analysis for Static Balance Test 49 5.3 Statistical Analysis for Dynamic Balance Test 51 5.4 Comparison Static Balance with Dynamic Balance 54 5.5 Cognitive Function Assessment 55 5.6 Alzheimer’s Disease Classification 60 5.6.1 Classification Results: Static Balance 61 5.6.2 Classification Results: Dynamic Balance 62 5.6.3 Discussion 62 Chapter 6 Conclusions and Future Work 64 6.1 Conclusions 64 6.2 Future Work 65 References 67

    C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer, and M. Scazufca, “Global prevalence of dementia: A delphi consensus study,” The Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005.
    A. Serna, H. Pigot, and V. Rialle, “A computational model of activities performance decrease in Alzheimer’s disease,” International Journal of Medical Informatics, vol. 76, no. S3, pp. 377-383, 2007.
    M. C. Carrillo, E. Dishman, and T. Plowman, “Everyday technologies for Alzheimer’s disease care: Research findings, directions, and challenges,” Alzheimer’s & Dementia, vol. 5, no. 6, pp. 479-488, 2009.
    N. B. Alexander, J. M. Mollo, B. Giordani, J. A. Ashton-Miller, A. B. Schultz, J. A. Grunawalt, and N. L. Foster, “Maintenance of balance, gait patterns, and obstacle clearance in Alzheimer’s disease,” Neurology, vol. 45, no. 5, pp. 908-914, 1995.
    K. Berg, S. Wood-Dauphinėe, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: Preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304-311, 1989.
    D. Podsiadlo and S. Richardson, “The timed ‘Up & Go’: A test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142-148, 1991.
    J. M. Guralnik, E. M. Simonsick, L. Ferrucci, R. J. Glynn, L. F. Berkman, D. G. Blazer, P. A. Scherr, and R. B. Wallace, “A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission,” Journal of Gerontology, vol. 49, no. 2, pp. 85-94, 1994.
    A. F. Pettersson, M. Engardt, and L. Wahlund, “Activity level and balance in subjects with mild Alzheimer’s disease,” Dementia and Geriatric Cognitive Disorders, vol. 13, no. 4, pp. 213-216, 2002.
    A. F. Pettersson, E. Olsson, and L. O. Wahlund, “Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease,” Dementia and Geriatric Cognitive Disorders, vol. 19, no. 5, pp. 299-304, 2005.
    R. Romdhane, E. Mulin, A. Derreumeaux, N. Zouba, J. Piano, L. Lee, I. Leroi, P. Mallea, R. David, M. Thonnat, F. Bremond, and P. H. Robert, “Automatic video monitoring system for assessment of Alzheimer’s disease symptoms,” Journal of Nutrition Health and Aging, vol. 16, no. 3, pp. 213-218.
    T. Nakamura, K. Meguro, H. Yamazaki, H. Okuzumi, A. Tanaka, A. Horikawa, K. Yamaguchi, N. Katsuyama, M. Nakano, H. Arai, and H. Sasaki, “ Postural and gait disturbance correlated with decreased frontal cerebral blood flow in Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 11, no. 3, pp. 132-139, 1997.
    B. Milner, “Handwriting recognition using acceleration-based motion detection” Document Image Processing and Multimedia, vol. 41, no. 5, pp. 1-6, 1999.
    N. Ravi, D. Nikhil, P. Mysore, and M. L. Littman, “Activity recognition from accelerometer data,” in Proc. IAAI, 2005, pp. 1541-1546.
    M. Sullivan, C. Blake, C. Cunningham, G. Boyle, and C. Finucane, “Correlation of accelerometry with clinical balance tests in older fallers and non-fallers” Age and Ageing, vol. 38, no. 3, pp. 308-313, 2009.
    W. Janssen, D. G. Kulcu, H. Horemans, H. J. Stam, and J. Bussmann, “Sensitivity of accelerometry to assess balance control during sit-to-stand movement,” IEEE Trans. Neural Systems and Rehabilitation, vol. 16, no. 5, pp. 479-484, 2008.
    S. Gillain, E. Warzee, F. Lekeu, V. Wojtasik, D. Maquet, J. L. Croisier, E. Salmon, and J. Petermans, “The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions,” Annals of Physical and Rehabilitation Medicine, vol. 52, no. 6, pp. 453-474, 2009.
    C. J. Lamoth, F. J. Van Deudekom, J. P. Van Campen, B. A. Appels, O. J. De Vries, and M. Pijnappels, “Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people,” Journal of Neuroengineering and Rehabilitation, vol. 8, no. 2, pp. 1186-1195, 2011.
    J. S. Choi, H. S. Oh, D. W. Kang, K. R. Mun, M. H. Choi, S. J. Lee, J. W. Yang, S. C. Chung, S. W. Mun, and G. R. Tack, “Comparison of gait and cognitive function among the elderly with Alzheimer’s disease, mild cognitive impairment and healthy,” International Journal of Precision Engineering and Manufacturing, vol. 12, pp. 169-173, 2011.
    B. R. Greene and R. A. Kenny, “Assessment of cognitive decline through quantitative analysis of the Timed Up and Go Test,” IEEE Trans. Biomedical Engineering, vol. 59, no. 4, pp. 988-995, 2012.
    L. Palmerini, L. Rocchi, S. Mellone, F. Valzania, and L. Chiari, “Quantitative evaluation of the instrumented Timed Up and Go in Parkinson’s disease,” Gait and Posture, vol. 33, no. S1, pp. S17, 2011.
    M. F. Folstein, S. E. Folstein, and P. R. McHugh, “«Mini-mental state»: A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189-198, 1975.
    A. B. Graves, E. B. Larson, S. D. Edland, J. D. Bowen, W. C. Mccormick, S. M. Mccurry, M. M. Rice, A. Wenzlow, and J. M. Uomoto, “Prevalence of dementia and its subtypes in the Japanese American population of King County, Washington State,” American Journal of Epidemiology, vol. 144, no. 8, pp. 760-771, 1996.
    L. White, H. Petrovitch, G. W. Ross, K. H. Masaki, R. D. Abbott, E. L. Teng, B. L. Rodriguez, P. L. Blanchette, R. J. Havlik, G. Wergowske, D. Chiu, D. J. Foley, C. Murdaugh, and J. D. Curb, “Prevalence of dementia in older Japanese-American men in Hawaii,” Journal of American medical Association, vol. 276, no. 12, pp. 955-960, 1996.
    E. L. Teng, K. Homma, A. Homma, Y. Imai, E. Larson, A. Graves, K. Sugimoto, T. Yamaguchi, H. Sasaki, D Chiu, and L. R. White, “The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia,” International Psychogeriatrics, vol. 6, no. 1, pp. 45-58, 1994.
    R. K. Y. Chong, F. B. Horak, J. Frank, and J. Kaye, “Sensory organization for balance: Specific deficits in Alzheimer’s but not in Parkinson’s disease,” Journals of Gerontology, vol. 54, no. 3, pp. 122-128, 1999.
    Y. Rolland, G. A. Van Kan, F. Nourhashemi, S. Andrieu, C. Cantet, S. Guyonnet-Gillette, and B. Vellas, “An abnormal “One-leg Balance” test predicts cognitive decline during Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 16, no. 3, pp. 525-531, 2009.
    J. S. Wang, Y. L. Hsu, and J. N. Liu, “An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3508-3521, 2010.
    W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science and Technology, vol. 19, no. 8, pp. 1-11, 2008.
    R. E. Mayagoitia, J. C. Lo ̈tters, P. H. Veltink, and H. Hermens, “Standing balance evaluation using a triaxial accelerometer,” Gait and Posture, vol. 16, no. 1, pp. 55-59, 2002.
    J. Perry, E. L. Bontrager, R. A. Bogey, J. K. Gronley, and L. A. Barnes, “The rancho EMG analyzer: A computerized system for gait analysis,” Journal of Biomedical Engineering, vol. 15, no. 6, pp. 487-496, 1993.
    王俊堯,基於慣性感測器步態分析之阿茲海默氏症預測與分類,國立成功大學電腦與通信工程研究所,2012。
    U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition and monitoring using multiple sensors on different body positions,” in Proc. Int’l Workshop on Wearable and Implantable Body Sensor Networks, 2006, pp. 113-116.
    P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler, “Floating search methods for feature selection with nonmonotonic criterion functions,” in Proc. Int’l Conf. Pattern Recognition, 1994, pp. 279-283.
    M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis, vol. 1, no. 1-4, pp. 131-156, 1997.
    V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
    B. Boser, I. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Proc. 5th Annu. Wkshp. Comput. Learning Theory, 1992, pp. 144-152.
    D. Maquet, F. Lekeu, E. Warzee, S. Gillain, V. Wojtasik, E. Salmon, J. Petermans, and J. L. Croisier, “Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease: Simple versus dual task: A preliminary report,” Clinical Physiology and Functional Imaging, vol. 30, no. 1, pp. 51-56, 2010.
    H. Garavan, T. J. Ross, K. Murphy, R. A. P. Roche, and E. A. Stein, “Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction,” Neuroimage, vol. 17, no. 4, pp. 1820-1829, 2002.
    J. M. Guralnik and L. Ferrucci, “Assessing the building blocks of function: Utilizing measures of functional limitation,” American Journal of Preventive Medicine, vol. 25, no. 3, pp. 112-121, 2003.
    S. Mazumdar, P. R. Houck, K. S. Liu, B. H. Mulsant, B. G. Pollock, M. A. Dew, and C. F. Reynolds, “Intent-to-treat analysis for clinical trials: Use of data collected after termination of treatment protocol,” Journal of Psychiatric Research, vol. 36, no. 3, pp. 153-164, 2002.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE