| 研究生: |
蔡忠佑 Tsai, Chuang-Yu |
|---|---|
| 論文名稱: |
稜鏡成像位姿變化之分析與設計 Prisms Analysis and Design Base on Image Orientation Change |
| 指導教授: |
林昌進
Lin, P. D. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 稜鏡 、光線追蹤 |
| 外文關鍵詞: | prism, ray-tracing |
| 相關次數: | 點閱:102 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用歪斜光線追蹤法,探討如何分析及設計一稜鏡,使之能用以來導引物所發出的光線,在經稜鏡多次反射後,其最後看到的虛像與物之間能達到指定的方位變化(在此簡稱為成像位姿變化),並成功地發展出完整且純解析的稜鏡設計理論。
傳統的稜鏡設計方法,乃是以幾何圖解法或數值近似的方法,利用試誤方式一步一步慢慢地尋找解答。但此粗略的設計方法,除了曠日費時且無法提供解析的結果外,在光學分析上也有一定的難度。因此,本論文深入探討歪斜光線追踪與靈敏度分析,並推導出單一平坦邊界折(反)射矩陣的數學模式,並以此為像位變化的數學模式基礎,進而建構出優化函數矩陣之理論。其中,優化函數矩陣可以非常完整且明確地描述物在經過一連串任意的平坦邊界成像後其像位變化。接著由優化函數矩陣與反射矩陣出發,發展出不同以往的稜鏡設計理論。
本文針對不同的設計需求,發展了二種不同的稜鏡設計方法:矩陣分解法與輔助向量法。其中,矩陣分解法較適用於簡單的系統,方便且直接;而輔助向量法,乃是引進了一套輔助旋轉軸與輔助旋轉角,設計出最少反射面的稜鏡,並找出其解析解。而其中所有參與稜鏡設計的數學建模過程,完全利用代數解析的方法來推導及求出解答,而完全不用數值逼近求解法,可見其本文設計理論之精確度與便利性。
This paper presents an exactly analytical methodology of prism analysis and design base on an image with a required orientation change with respect to the object (referred to as Image Orientation Change for short) by using the methods of skew-ray tracing and sensitivity analysis.
Traditional prism design of this kind is a trial-and-error with the aid of geometrical drawing and difficultly provides analytical results. By using skew ray tracing sensitivity analysis, a reflector matrix is addressed. In addition, a merit function matrix is presented which can specify image orientation change after the image is reflected by an arbitrary number of flat boundary surfaces. Base on the applications of reflector matrix and merit function matrix, we develop the diffenent design method from traditional method.
Two design approaches are proposed in this paper. One can obtain many different configurations of prisms by matrix decomposition method which is sutalbe for simple system design. The other can design a prism with a minimum number of flat boundary surfaces by the aid of an auxiliary unit vector, and the exact analytical solutions are addressed and then find our the analytical solutions. In particular, the methemetical modeling of this prisms design method is exactly algebraic analytical instead of numerical approsimation. Consequently, compared with traditional trail-and-error methods, the propose approaches are more systematic, efficient, and accurate.
1. W. J. Smith, Modern Optical Engineering (3rd ed., Edmund Industrial Optics, Barrington, N.J., 2001).
2. K. Lau, R. Hocken, and W. Haight, “Automatic Laser Tracking Interferometer System for Robot Metrology,” Precision Engineering 8, No.1, 3-8 (1986).
3. F. A. Jenkins and H. E. White, Fundamentals of Optics (4rd ed., WcGraw-Hill, 1981).
4. E. Hecht, Optics (3rd edition, Addison Wesley Longman, Inc., New York, 1998).
5. R. S. Longhurst, “Geometrical and Physical Optics, Longmans,” Green, 42-44 (1964).
6. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1985).
7. 江適文, “幾何光學之光跡追蹤研究Study of Ray Tracing in Geometrical Optics,” 成功大學機械系碩士論文,中華民國九十年六月。
8. W. T. Welford, Aberrations of the Symmetrical Optical System (Academic Press, New York, 1974).
9. T. B. Andersen, “Optical Aberration Functions: Derivatives With Respect To Surface Parameters For Symmetrical Systems.,” Appl. Opt. 24, 1122-1128 (1985).
10. T. B. Andersen, “Optical Aberration Functions: Derivatives With Respect To Axial Distances For Symmetrical Systems.,” Appl. Opt. 21, 1817-1823 (1982).
11. T. B. Andersen, “Evaluating Rms Spot Radii by Ray Tracing.” Appl. Opt. 21, 1241-1247 (1982).
12. D. L. Shealy and D. G. Burkhard, “Caustic surface merit functions in optical design,” J. Opt. Soc. Am. 66, 1122 (1976).
13. A. M. Kassim, D. L. Shealy, and D. G. Burkhard, “Caustic merit function for optical design,” Appl. Opt. 28, 601-606 (1989).
14. P. D. Lin, “Analysis and Modeling of Optical Element and Systems,” ASME Journal of Engineering for Industry 116, No. 1 (1994).
15. M. Laikin, Lens Design (Second Edition, New York, Marcel Dekker, Inc. 1995).
16. P. D. Lin and C. H. Lu, “Analysis and Design of Optical System by Using Sensitivity Analysis of Skew Ray Tracing,” Appl. Opt. 43, 796-807 (2004).
17. P. D. Lin and C. H. Lu, “Modeling and Sensitivity Analysis of Laser Tracking Systems by Skew-Ray Tracing Method,” ASME, Journal of Manufacturing Science and Engineering 254, 654-662 (2005).
18. P. D. Lin and K. F. Ehmann, “Sensing of Motion Related Errors in Multi-axis Machines,” ASME Journal of Dynamic Systems, Measurement, and Control 118, No. 3, pp. 425-433 (1996).
19. T. T. Liao and P. D. Lin, “Analysis of optical elements with flat boundary surfaces,” Appl. Opt. 42, 1191-1202 (2003).
20. P. D. Lin and T. T. Liao, “A New Model of Binocular Stereo Coordinate Measurement System Based on Skew Ray Tracing,” Transactions of the ASME Journal of Dynamic System, Measurement, and Control, 126, No.1, 102-114 (2004).
21. M. Atsushi and S. Nobuo, “Design of a Four-element, Hollow-cube Corner Retroreflector for Satellities by Use of a Genetic Algorithm,” Appl. Opt. 37, 438-442 (1998).
22. N. Shojiro and K. Jun, “Retroreflector Using Gradient-index Rods,” Appl. Opt. 30, 815-822 (1991).
23. L. Z. James, “Cube Corner Retroreflector Test and Analysis,” Appl. Opt., 15, 445-452 (1976).
24. J. Y. Yen, C. S. Jeng, and K. C. Fan, “Servo Design for 3D Laser Tracking Measurement System,” Transactions of the ASME Journal of Dynamic System, Measurement and Control 118, 476-481 (1996).
25. Pamphlet, “on-Target Tracking, Chesapeake Laser System Inc., Three and Five Axis Laser Tracking System,” US-Patent 4, 714, 339, Dec. 22, 1987.
26. P. Haschberger, O. Mayer, V. Tank, and H. Dietl, “Ray Tracing Through an Eccentrically Rotating Reflector Used for Path-length Alteration in a New Michelson Interferometer,” J. Opt. Soc. Am. 8, 1991-2000 (1991).
27. D. W. Swift, ‘‘Image rotation devices—a comparative study,’’ Opt. Laser Technol. , 175-188 (August 1972).
28. Optical Design, (MIL-HDBK-141, U.S. Defense Supply Agency Rep. 13-113-52, Washington, D.C., 1962).
29. R. E. Hopkins, ‘‘Mirror and prism systems,’’ Appl. Opt. Opt. Eng. 3, 269-308 (1965).
30. R. E. Hopkins, “Mirror and prism systems,” in Military Standardization Handbook: Optical Design (MIL-HDBK 141~U.S. Defense Supply Agency, Washington, D.C., 1962).
31. G. W. Stewart, Introduction to Matrix Computations, (Academic press, Inc. London LTD., 1973).
32. E. J. Galvez and C. D. Holmes, “Geometric phase of optical rotators,” J. Opt. Soc. Am. A 16, 1981-1985 (1999).
33. P. R. Yoder and Jr., “Study of light deviation errors in triple mirror and tetrahedral prisms,” J. Opt. Soc. Am. 48, 496-499 (1958).
34. K. N. Chandler, “On the effects of small errors in angles of corner-cube reflectors,” J. Opt. Soc. Am. 50, 203-206 (1960).
35. H. D. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10, 1559-1566 (1971).
36. M. Skop, D. Ben-Ezra, and N. Schweitzer, “Adjustable stabilized reflector for optical communication,” in Proceedings of the IEEE Nineteenth Convention of Electrical and Electronics Engineers in Israel (Jerusalem ~IEEE, New York, 1996), pp. 383-386.
37. J. S. Beggs, “Mirror-image kinematics,” J. Opt. Soc. Am. 50, 388-393 (1960).
38. R. Kingslake, Optical System Design (Academic, New York, 1983).
39. J. M. Sasia, “Aberrations from a prism and a grating,” Appl. Opt. 39, 34-39 (2000).
40. J. W. Howard, “Formulas for the coma and astigmatism of wedge prisms used in converging light,” Appl. Opt. 24, 4265-4268 (1985).
41. C. J. Barth and D. Oepts, “Stigmatic and coma-free imaging with a thick prism: comparison of third-order theory and raytracing results,” Appl. Opt. 27, 3838-3844 (1988).
42. W. Mao and Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 33, 580-585 (1999).
43. V. S. Nuzhin, S. V. Solk, and V. K. Knyazev, “Developing and fabricating a mirror analog of a Dove prism,” J. Opt. Technol. 72, 480-481 (2005).
44. F. A. Rosell, “Prism Scanner,” J. Opt. Soc. Am. 50, 521-526 (1960).
45. P. Zhao and G. Li, “Optimized design of parallwl beam-splitting prism,” Chiese Optical Letters 2, 615-617 (2004).
46. M. C. Simon and P. A. Larocca, “Minimum deviation for uniaxial prisms,” Appl. Opt. 34, 709-715 (1995).
47. M. C. Simon, ‘‘Ray tracing formulas for monoaxial optical components,’’ Appl. Opt. 22, 354-360 (1983).
48. M. C. Simon and R. M. Echarri, ‘‘Ray tracing formulas for monoaxial optical components: vectorial formulation,’’ Appl. Opt. 25, 1935-1939 (1986).
49. M. C. Simon and L. I. Perez, ‘‘Evanescent waves in total reflection in uniaxial crystals,’’ Optik 86, 18-22 (1990).
50. T. S. Yeo, D. J. N. Wall, and R. H. T. Bates, “Diffraction by a prism,” J. Opt. Soc. Am. A 2, 965-970 (1985).
51. E. G. Paek, “Nonmechanical image rotation with an acousto-optic dove prism,” Opt. Lett. 22, 1195-1197 (1997).
52. J. D. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics Principles and Practices (2nd Edition, Addision-Wesley Publishing Company, 1981).
53. R. P. Paul, Robot Manipulators-Mathematics (Programming and Control, MIT press, Cambridge, Mass., 1982).
54. C. H. Wu, “Robot Accuracy Analysis Based on Kinematics,” IEEE Journal of Robotics and Automation, RA-2/3, 171-179 (1986).
55. J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” Transactions of the ASME Journal of applied mechanics 77, 215-221 (1955).
56. J. J. Uicker, “On the Dynamic Analysis of Spatial Linkages Using 4x4 Matrices,” Dissertation for Doctor of Philosophy, Northwestern University, Evanston, ILL., Aug. 1965.
57. P. D. Lin and T. T. Liao, “Skew-Ray Tracing and Sensitivity Analysis of Geometrical Optics,” Transactions of the ASME Journal of Manufacturing Science and Engineering 122, 338-349 (2000).
58.廖德潭, “雙照相機立體成像系統的建模與分析Analysis and Modeling of Two-CCD Camera Stereo Vision System,” 成功大學機械系博士論文,中華民國九十二年一月。
59.盧嘉鴻, “雷射追蹤器的光學建模與分析Optical Modeling and Analysis of Laser Tracker,” 成功大學機械系博士論文,中華民國九十三年七月。
60. D. F. Feder, “Differentiation of Ray-tracing Equations with respect to Construction Parameters of Rotationally Symmetric Optics,” J. Opt. Soc. Am. 58, 1494-1505 (1968).
61. S. Bryan and G. W. Forbes, “Differential Ray Tracing in Inhomogeneous Media,” J. Opt. Soc. Am. 14, 2824-2836 (1997).