| 研究生: |
侯俞安 Hou, Yu-An |
|---|---|
| 論文名稱: |
應用集群分析探討氣候變遷情境下南化水庫之乾旱營運策略 Developing Drought Operation Strategies for the Nanhua Reservoir Under Climate Change Scenarios Using Clustering Methods |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 氣候變遷 、集群分析 、多目標優化 、乾旱調適 |
| 外文關鍵詞: | Climate change, Clustering analysis, Multi-objective optimization, Drought operation strategies |
| 相關次數: | 點閱:23 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對氣候變遷導致的水文變異與極端乾旱事件發生頻率上升,傳統水庫營運規線已難以應對未來非定常水文條件對供水穩定性的挑戰。本研究以南化水庫及甲仙攔河堰系統為例,結合氣候模式模擬資料與降雨—逕流模式,評估氣候變遷對入流變化的影響,並透過階層式集群分析辨識未來流量變異特徵,進而建立具適應性之水庫營運策略。本研究採用CMIP6模式所模擬之SSP2-4.5及SSP5-8.5排放情境下的氣候資料,經由極限學習機(ELM)建構降雨—逕流模式推估受氣候變遷影響流量,再依據豐水期與枯水期流量變異進行分群,將未來流量資料劃分為三種水文狀況。在各群不同情境水文狀況以多目標優化模式建立適應氣候變遷之最佳規線,模式考量同時最小化最大單旬缺水率(XSR)、最大連續缺水量(XCS)與總缺水率(TSR)等缺水特性,並以各分群目標函數之中位數選取具代表性的營運規線,建立差異化營運規線,適應未來可能不同的水文狀況。研究結果顯示,南化水庫在氣候變遷情境下,於近未來與中未來期間枯水期流量平均減少約8–14%,豐水期流量則會增加7–16%。各分群代表性營運規線相較於原營運策略,在最大單旬缺水率(XSR)方面可降低約40%至58%,最大連續缺水量(XCS)平均改善幅度達49%;而總缺水率(TSR)雖改善幅度相對有限,仍可在各群中降低約2.7% 至7.5%。整體而言,代表性營運規線可顯著改善原營運策略於不同氣候變遷情境下的供水不穩定性。透過集群分析導入分群調適機制,有助於減緩氣候模式不確定性對營運決策之干擾,可作為氣候變遷下水資源管理與水庫營運策略規劃之重要參考。
Climate change has intensified hydrological variability and increased the frequency of extreme drought events, which pose challenges to the reliability of traditional reservoir operation rule curves under future non-stationary conditions. This study focuses on the Nanhua Reservoir and Jiaxian Weir system in southern Taiwan to evaluate impacts of climate change on performance of reservoir operation. Climate projections from CMIP6 models under SSP2-4.5 and SSP5-8.5 are utilized to simulate future precipitation, which are then served as inputs to the Extreme Learning Machine (ELM) based rainfall-runoff model to project reservoir inflow data. Hierarchical clustering analysis categorizes future inflow patterns into three groups based on the similarity of wet-and-dry-season streamflow. For each group, a multi-objective optimization model searches for adaptive rule curves that minimize the maximum single-period shortage rate (XSR), the maximum consecutive shortage (XCS), and the total shortage rate (TSR). Representative rule curves are chosen based on the median performance within each cluster. The results indicate that the dry season inflows may decline by 8–14%, while the wet season inflows may increase by 7–16%. Compared to the current operating rules, adaptive rule curves reduce XSR by 40–58%, improve XCS by an average of 49%, and cause reductions of 2.7–7.5% in TSR. The proposed cluster-based adaptive operation approach enhances water supply reliability and provides a robust framework for climate-resilient reservoir planning and management.
1. Adeloye, A. J., & Dau, Q. V. (2019). Hedging as an adaptive measure for climate change-induced water shortage at the Pong reservoir in the Indus Basin Beas River, India. Science of The Total Environment, 687, 554–566.
2. Bayissa, Y., Srinivasan, R., Hunink, J., Nyolei, D., Moges, S., Costa, D. A., Tadesse, D., Melesse, A., & Tilahun, S. (2025). Evaluating the potential of nature-based solutions to mitigate land use and climate change impacts on the hydrology of the Gefersa and Legedadi watersheds in Ethiopia. Journal of Hydrology: Regional Studies, 57, 102130. https://doi.org/10.1016/j.ejrh.2024.102130
3. Brekke, L. D., Maurer, E. P., Anderson, J. D., Dettinger, M. D., Townsley, E. S., Harrison, A., & Pruitt, T. (2009). Assessing reservoir operations risk under climate change. Water Resources Research, 45, W04411. https://doi.org/10.1029/2008WR006941
4. Draper, A. J., & Lund, J. R. (2004). Optimal hedging and carryover storage value. Journal of Water Resources Planning and Management, 130(1), 83–92. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83)
5. Elgendy, M., Hassini, S., & Coulibaly, P. (2024). Review of climate change adaptation strategies in water management. Journal of Hydrologic Engineering, 29(1), 03123001. https://doi.org/10.1061/JHYEFF.HEENG-6014
6. Fernández-Nóvoa, D., Soares, P. M. M., García-Feal, O., Costoya, X., Trigo, R. M., & Gómez-Gesteira, M. (2025). Neural network approach for modeling future natural river flows: Assessing climate change impacts on the Tagus River. Journal of Hydrology: Regional Studies, 58, 102191. https://doi.org/10.1016/j.ejrh.2025.102191
7. Georgakakos, K. (2012). Water supply and demand sensitivities of linear programming solutions to a water allocation problem. Applied Mathematics, 3(3), 1285–1297. https://doi.org/10.4236/am.2012.330185
8. Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resilience, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. https://doi.org/10.1029/WR018i001p00014
9. Heydari, M., Othman, F., & Qaderi, K. (2015). Developing optimal reservoir operation for multiple and multipurpose reservoirs using mathematical programming. Mathematical Problems in Engineering, 2015, 435752. https://doi.org/10.1155/2015/435752
10. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-48318-9
11. Jordan, S. M., Quinn, J. D., Zaniolo, M., Giuliani, M., & Castelletti, A. (2024). Dam reoperation to mitigate changing climate extremes in the Omo River Basin, Ethiopia. Journal of Water Resources Planning and Management, 150(11). https://doi.org/10.1061/JWRMD5.WRENG-6468
12. Levey, J. R., & Sankarasubramanian, A. (2025). Is reservoir storage effectively utilized in the Southeastern US? A regional assessment to improve water supply availability considering potential storage and flood scenarios. Earth’s Future, 13(2). https://doi.org/10.1029/2024EF005176
13. Loucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. Springer. https://doi.org/10.1007/978-3-319-44234-1
14. Men, B. H., Wu, Z. J., Li, Y. S., & Liu, H. L. (2019). Reservoir operation policy based on joint hedging rules. Water, 11(3), 419. https://doi.org/10.3390/w11030419
15. Okkan, U., Fistikoglu, O., Ersoy, Z. B., & Noori, A. T. (2023). Investigating adaptive hedging policies for reservoir operation under climate change impacts. Journal of Hydrology, 619, 129286. https://doi.org/10.1016/j.jhydrol.2023.129286
16. Raje, D., & Mujumdar, P. P. (2010). Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances in Water Resources, 33(3), 312–326. https://doi.org/10.1016/j.advwatres.2009.12.008
17. Rogers, P. (2008). Coping with global warming and climate change. Journal of Water Resources Planning and Management, 134(3), 203–204. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(203)
18. Sant’Anna, C., Tilmant, A., & Pulido-Velazquez, M. (2022). A hydrologically-driven approach to climate change adaptation for multipurpose multireservoir systems. Climate Risk Management, 36, 100427.
19. Shiau, J. T., Wen, H. H., & Su, I. W. (2021). Comparing optimal hedging policies incorporating past operation information and future hydrologic information. Water Resources Management, 35, 2177–2196. https://doi.org/10.1007/s11269-021-02834-2
20. Shiau, J. T., Hung, Y. N., & Sie, H. E. (2018). Effects of hedging factors and fuzziness on shortage characteristics during droughts. Water Resources Management, 32, 1913–1929. https://doi.org/10.1007/s11269-018-1912-x
21. Thomas, T., Ghosh, N. C., & Sudheer, K. P. (2021). Optimal reservoir operation – A climate change adaptation strategy for Narmada Basin in central India. Journal of Hydrology, 598, 126238. https://doi.org/10.1016/j.jhydrol.2021.126238
22. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138. https://doi.org/10.3354/cr00953
23. 郭又甄,應用極限學習機發展連續型降雨逕流模式推估臺灣南部情境流量,國立成功大學水利及海洋工程研究所碩士論文,2024
24. 經濟部水利署,台灣地區主要水庫蓄水量報告表,2025
25. 經濟部水利署水利規劃試驗所,台南大湖水資源規劃檢討,2012
26. 經濟部水利署南區水資源局,曾文水庫越域引水工程計畫—輸水工程可行性規劃成果檢討及設計—水源運用方式檢討報告,2006
27. 經濟部水利署,南化水庫營運要點,2024
28. 經濟部水利署,甲仙攔河堰營運要點,2024
29. AR6氣候變遷關鍵指標資料說明文件,臺灣氣候變遷推估資訊與調適知識平台計畫(TCCIP),2024