簡易檢索 / 詳目顯示

研究生: 陳立東
Chen, Li-Tung
論文名稱: 鈷系統膠態電解質的製備及其在染料敏化太陽能電池上之應用
Preparation of Cobalt-based Gel-state Electrolytes for Dye-Sensitized Solar Cell Applications
指導教授: 李玉郎
Lee, Yuh-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 鈷系統膠態電解質碳化鈦染料敏化太陽能電池
外文關鍵詞: Cobalt-based gel-state electrolyte, TiC, Dye-sensitized solar cell
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在藉由奈米粒子添加劑的導入,提升鈷系統膠態染料敏化太陽能電池的元件效率,所使用的奈米粒子添加劑包括:(1) TiO2奈米粒子、(2)表面改質的TiO2奈米粒子、(3) TiC奈米粒子、(4)改質TiO2與TiC混合奈米粒子。實驗結果顯示,文獻上常用的TiO2奈米粒子導入後抑制對電極上的電荷傳遞、增加光電極漏電的可能性、降低電池效率,實驗發現此效應與TiO2對氧化還原對[Co(bpy)3]2+/3+無催化活性卻有靜電吸引力有關。第二部結果顯示,若TiO2表面經過改質使其具有-NH2或-NH3+的官能基,則可以改善原先TiO2造成的漏電問題,因此效率表現(ƞ:5.66%、5.40%)皆比未改質的好,但整體效率與無添加劑的元件(ƞ:5.67%)相近。第三部分結果顯示,TiC導入電解質後明顯降低對電極的界面電荷傳輸阻力、提高電解質的離子導電度,但在光電極上的漏電情況亦增加,因此在3wt%TiC的添加量時,電池有最高的效率6.29%,其與液態元件效率6.38%相當接近。由催化活性實驗發現,將TiC塗佈在白金電極上(Pt/ TiC)所得的表現與將其作為添加劑的結果相近,因此本研究第四部分以Pt/ TiC作為對電極,配合TiO2-NH2改質添加劑的導入,預期此組合可保留TiC降低RPt的優點,又可擁有TiO2-NH2防止漏電的功效,實驗結果顯示(Pt/ TiC)對電極的使用確實可得到較低的RPt,但TiO2-NH2添加劑導入後仍會提高RPt,故電池效率僅達5.19%。最後,將上述元件置於50oC環境下進行穩定性測試,實驗結果顯示1000小時後,液態元件僅可保有65%的初始效率,而導入3wt% TiC的膠態元件則有92%的初始效率,表現出相當好的穩定性。因此,藉由添加劑的調控,本研究的膠態元件可達到與液態元件效率相近,且同時具備良好的高溫長效穩定性。

    The aim of this study is to increase cell performances of cobalt-based gel-state dye-sensitized solar cells by using nano-fillers. Including: (1) TiO2 nano-particles (NPs), (2) Surface modified TiO2 NPs, (3) TiC NPs. In results, TiO2 fillers inhibit charge transfer on counter electrode, increase chances of electron leakage and lead to poorer efficiency (ƞ: 5.67%4.07%). The effects are studied and related to the electrocatalytic activity and the electrostatic attraction between TiO2 and [Co(bpy)3]2+/3+. In part 2, results show that recombination has been eased after applying modified TiO2 fillers, which have -NH2 or -NH3+ groups on particle surfaces. Thus, better performances (ƞ: 5.66%, 5.40%) are obtained but only approximate to the device without fillers (ƞ: 5.67%). In part 3, results show that TiC fillers facilitate charge transfer on counter electrode and conductivity of the electrolyte but also recombination. Therefore, an optimal efficiency 6.29% can be achieved at 3wt% TiC, which is comparable to liquid-state device 6.38%. In part 4, results show lower RPt after applying (Pt/ TiC) counter electrode, but RPt still increase after using TiO2-NH2 fillers, thence the overall efficiency is only 5.19%. At last in stability tests, liquid-state device can maintain only 65% of the initial efficiency in 50oC environment after 1000 hours, while the gel-state device with 3wt% TiC fillers can keep 92%. Thus, by the regulation from nano-fillers, efficiency of gel-state DSSC can reach to liquid-state DSSC as well and keep better thermal long-term stability.

    摘要 I 英文延伸摘要 III 誌謝 IX 總目錄 XI 圖目錄 XV 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第二章 原理與文獻回顧 4 2-1 染料敏化太陽能電池介紹 4 2-1-1 染料敏化太陽能電池工作原理 5 2-1-2染料敏化太陽能電池中的電子傳輸路徑 6 2-2染料敏化太陽能電池之結構介紹 8 2-2-1 導電基板 8 2-2-2 氧化物半導體 10 2-2-3 敏化劑 13 2-2-4 電解質 20 2-2-5 對電極 24 2-3 文獻回顧 26 2-3-1 鈷系統膠態染料敏化太陽能電池 26 2-3-2 奈米粒子添加劑 27 2-3-3 改質奈米粒子添加劑 28 2-3-4 碳化鈦 29 第三章 實驗儀器與材料 30 3-1 實驗藥品與材料 30 3-2 儀器原理與分析 32 3-2-1 太陽光模擬器 (Solar Simulator) 32 3-2-2 電化學交流阻抗 (EIS) 36 3-2-3能量分散光譜分析 (Energy-dispersive spectroscopy, EDS) 42 3-2-4 界面電位量測儀 43 3-2-5 傅利葉紅外線光譜儀 (FTIR) 44 3-2-6 一般儀器 45 3-3 實驗流程 46 3-3-1 二氧化鈦薄膜製備 46 3-3-2 光電極敏化程序 47 3-3-3 對電極製備程序 47 3-3-4 電解質製備程序 48 3-3-5 DSSC元件組裝 50 第四章 研究結果與討論 51 4-1 添加TiO2奈米粒子的效應 51 4-2 添加改質TiO2奈米粒子的效應 55 4-2-1 改質TiO2奈米粒子的分析 55 4-2-2 添加改質TiO2奈米粒子的元件表現 58 4-3 添加TiC奈米粒子的效應 62 4-3-1 添加TiC奈米粒子的元件表現 62 4-3-2 添加TiC/ TiO2奈米粒子對RPt的效應探討 66 4-3-3 TiC/ TiO2對Co/ I的靜電吸引力 70 4-4 以旋轉塗佈法製備TiC於白金電極及其應用 74 4-5 鈷膠態元件高溫長效穩定性測試 76 第五章 結論與建議 79 5-1 結論 79 5-2 未來工作與建議 82 第六章 參考文獻 84

    [1] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell,” Nature 261, 402-403 (1976).
    [2] B. O’Regan and M. Grätzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films," Nature 353, 737-739 (1991).
    [3] S. Mathew, A. Yella, P. Gao, R. H.-Baker, B. F. E. Curchod, N. A.-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, “Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers,” Nature Chemistry 6, 242-247 (2014).
    [4] J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, M. K. Nazeeruddin and Michael Grätzel, “A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Potentials,” Nature Communications 3:631, 1-8 (2012)
    [5] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorganic Chemistry 44, 6841-6851 (2005).
    [6] M. Grätzel, “Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry 164, 3-14 (2004).
    [7] Y.-Y. Kuo and C.-H. Chien, “Sinter-free Transferring of Anodized TiO2 Nanotube-Array onto a Flexible and Transparent Sheet for Dye-Sensitized Solar Cells,” Electrochimica Acta 91, 337-343 (2013).
    [8] H. C. Weerasinghea, P. M. Sirimannea, G. V. Franksb, G. P. Simona and Y.-B. Cheng, “Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry 213, 30-36 (2010).
    [9] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin and M. Grätzel, “High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode,” Chemical Communications 38, 4004-4006 (2006).
    [10] M. Grätzel, “Photoelectrochemical Cells.” Nature 414, 338-344 (2001).
    [11] F. Huang, D. Chen, X. L. Zhang, R. A. Caruso and Y.-B. Cheng, “Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye- Sensitized Solar Cells,” Advanced Functional Materials 20, 1301-1305 (2010).
    [12] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Letter 8, 3781-3786 (2008).
    [13] J. Jiu, S. Isoda, F. Wang and M. Adachi, “Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film,” The Journal of Physical Chemistry B 110, 2087-2092 (2006).
    [14] A. I. Kontosa, A. G. Kontosa, D. S. Tsoukleris, M. C. Bernardc, N. Spyrellis and P. Falaras, “Nanostructured TiO2 Films for DSSCS Prepared by Combining Doctor-Blade and Sol-Gel Techniques,” Journal of Materials Processing Technology 196, 243-248 (2008).
    [15] K. Fan, M. Liu, T. Peng, L. Maa and K. Dai, “Effects of Paste Components on the Properties of Screen-Printed Porous TiO2 Film for Dye-Sensitized Solar Cells,” Renewable Energy 35, 555-561 (2010).
    [16] Y. Li, J. Hagen, W. Schffrath, P. Otschik and D. Haarer, “Titanium Dioxide Films for Photovoltaic Cells Derived from a Sol-Gel Process,” Solar Energy Materials and Solar Cells 56, 167-174 (1999).
    [17] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” Journal of Applied Physics 32 (1961).
    [18] A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics,” Accounts of Chemical Research 33, 269-277 (2000).
    [19] M. K. Nazeeruddin, A. Kay, I.Rodicio, R. H.-Baker, E. Miiller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(11 Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes,” Journal of American Chemical Society 115, 6382-6390 (1993).
    [20] M. K. Nazeeruddin, P. Péchy and M. Grätzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex,” Chemical Communications 18, 1705-1706 (1997).
    [21] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” Journal of American Chemical Society 127, 16835-16847 (2005).
    [22] P. Wang, C. Klein, R. H.-Baker, S. M. Zakeeruddin and M. Grätzel, “A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells,” Journal of American Chemical Society 127, 808-809 (2004).
    [23] C. Y. Chen, M. Wang, J. Y Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G Wu, S. M. Zakeeruddin and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” American Chemical Society Nano 3, 3103-3109 (2009).
    [24] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” American Chemical Society Nano 4, 6032-6038 (2010).
    [25] T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, W.-G. Diau and M. Grätzel, “Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins,” Angewandte Chemie 49, 6646-6649 (2010).
    [26] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, " Science 334, 629-633 (2011).
    [27] S. Ito, S. M. Zakeeruddin, R. H.-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness,” Advenced Materials 18, 1202-1205 (2006).
    [28] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy and M. Grätzel, “High-conversion-efficiency Organic Dye-sensitized Solar Cells with a Novel Indoline Dye,” Chemical Communications 41, 5194-5196 (2008).
    [29] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, “High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary p-conjugated spacer,” Chemical Communications 16, 2198-2200 (2009).
    [30] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, “Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks,” Chemistry of Materials 22, 1915-1925 (2010).
    [31] G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Speciacally Designed to Test the Effciency of Redox Shuttles in Dye Sensitized Solar Cells,” Solar Energy Materials and Solar Cells 70, 85-101 (2001).
    [32] T. Stergiopoulos, E. Rozi, C. S. Karagianni and P. Falaras, “Influence of Electrolyte Co-additives on the Performance of Dye-Sensitized Solar Cells,” Nanoscale Research Letters 6, 1-7 (2011).
    [33] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu and C.-F. Chi, “A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells,” Electrochemistry Communications 12, 1662-1665 (2010).
    [34] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu and W.-G. Diau, “Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells,” Journal of Materials Chemistry 22, 6267-6273 (2012).
    [35] E. Olsen, G. Hagen, S. E. Lindquist, “Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2,” Solar Energy Materials and Solar Cells 63, 267-273 (2000).
    [36] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H.-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes,” Journal of the Electrochemical Society 153, A2255-A2261 (2006).
    [37] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin and K.-C. Ho, “A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite of PtNP/MWCNT on the Counter Electrodeomposite,” Journal of Materials Chemistry 20, 4067-6073 (2010).
    [38] L. Kavan, J.-H. Yum, M. K. Nazeeruddin, and M. Grätzel, “Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells,” ACS Nano 5, 9171-9178 (2011).
    [39] T. Stergiopoulos, M. Bidikoudi, V. Likodimos and P. Falaras, “Dye-sensitized Solar Cells Incorporating Novel Co(II/III) Based-redox Electrolytes Solidified by Silica Nanoparticles,” Journal of Materials Chemistry 22, 24430-24438 (2012).
    [40] W.-C. Xiang, W.-C Huang, U. Bachbcd and L. Spiccia, “Stable High Efficiency Dye-Sensitized Solar Cells based on a Cobalt Polymer Gel Electrolyte,” Chemical Communications 49, 8997-8999 (2013).
    [41] D. K. Lee, K.-S. Ahn, S. Thogiti and J.-H. Kim, “Mass Transport Effect on the Photovoltaic Performance of Ruthenium-based quasi-solid Dye Sensitized Solar Cells using Cobalt Based Redox Couples,” Dyes and Pigments 117, 83-91 (2015).
    [42] E. Chatzivasiloglou, T. Stergiopoulos, A. G. Kontos , N. Alexis , M. Prodromidis and P. Falaras, “The Influence of the Metal Cation and the Filler on the Performance of Dye-Sensitized Solar Cells using polymer-gel redox electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry 192, 49–55 (2007).
    [43] S. Yanagida, “Recent research progress of Dye-Sensitized Solar Cells in Japan,” Comptes Rendus Chimie 9, 597-604 (2006).
    [44] Y.-L. Lee, Y.-J. Shen and Y.-M. Yang, “A hybrid PVDF-HFP/nanoparticle Gel Electrolyte for Dye-Sensitized Solar Cell Applications,” Nanotechnology 19, 1-6 (2008).
    [45] H. Usu, H. Matsui, N. Tanabe and S. Yanagida, “Improved Dye-Sensitized Solar Cells using Ionic Nanocomposite Gel Electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry 164, 97-101 (2004).
    [46] L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, C. Bisio, S. M. Zakeeruddin, M. K. Nazeeruddin, L. Marchesec and M. Grätzel, “Enhancing the Open circuit voltage of Dye Sensitized Solar Cells by Surface Engineering of Silica particles in a Gel electrolyte,” Journal of Materials Chemistry A 1, 10142-10147 (2013).
    [47] J. He, J. M. Pringle and Y.-B. Cheng, “Titanium Carbide and Titanium Nitride-Based Nanocomposites as Efficient Catalysts for the Co2+/Co3+ Redox Couple in Dye-Sensitized Solar Cells,” Journal of Physical Chemistry C 118, 16818-16824 (2014).
    [48] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, “Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells,” Journal of the American Chemical Society 132, 16714-16724 (2010).
    [49] P. Smestad, C. Krebs, M. Lampert, G. Granqvist, K. L. Chopra, X. Mathew and H. Takakura, “Reporting Solar Cell Efficiencies in Solar Energy Materials and Solar Cells,” Solar Energy Materials and Solar Cells 92, 371-373 (2008).
    [50] A. Hauch and A. Georg, “Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells,” Electrochimica Acta 46, 3457-3466 (2001).
    [51] F. F.-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin and M. Grätzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids,” Journal of Physical Chemistry C 111, 6550-6560 (2007).
    [52] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy,” Journal of Physical Chemistry B 110, 13872-13880 (2006).
    [53] S.-C. Su, “Preparations of Printable Electrolytes for Dye-Sensitized Solar Cell Applications,” (2014)

    下載圖示 校內:2017-08-13公開
    校外:2017-08-13公開
    QR CODE