| 研究生: |
鐘丹 Chung, Tan |
|---|---|
| 論文名稱: |
以濕法冶金原理分離廢鋰三元電池中有價金屬之研究 Separation of Valuable Metals in Lithium-ion Battery Based on Hydrometallurgy |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 廢鋰離子電池 、離子交換 、樹脂 、分離 、溶媒萃取 |
| 外文關鍵詞: | ion exchange, resin, separation, solvent exchange |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨3C產品及電動車市場蓬勃發展,鋰離子電池使用量也隨之提高,而在台灣尚未有專門處理此電池的資源化廠,因此本論文針對廢棄鋰離子電池中有價金屬Ni、Co、Li、Mn之分離進行研究,主要透過離子交換法搭配溶媒萃取法將其分離,以利後續高純度回收原料之生產。
以螯合型陽離子交換樹脂M4195進行離子交換對四種金屬做選擇性之研究,M4195對目標金屬的選擇性依序為Ni> Co > Mn > Li,且在pH值實驗中,四種金屬的選擇性隨著pH值越高,樹脂對四種金屬的吸附效果越好。
將浸漬液稀釋後調整至pH=4,進料濃度約為2000ppm並以固定流速通入裝有M4195樹脂之管柱進行離子交換反應,樹脂吸附進料液中親和力較高的Co、Ni,而收集交換尾液中Mn、Li,操作至Co吸附飽和後,以固定流速通入脫附劑2N H2SO4將負載於M4195樹脂上的Co、Ni脫附富集後,將脫附液作為第二部分溶媒萃取的進料。
透過溶媒萃取進行Co、Ni分離,並使用萃取效率,分離係數,分配比來作為指標數據。利用Na-Cyanex 272透過調整皂化率、平衡pH值、萃取劑濃度、油水比、萃取時間、震盪速度等參數來萃取Co2+,已達到Co之最佳萃取率99.93%,而Ni之萃取率大約在1%。再利用硫酸進行反萃取,改變反萃取濃度、油水比、反應時間等,可達到最佳之反萃取效率為99.62%。
With the rapid development of 3C products and electric vehicle market, the use of lithium-ion batteries increases. Therefore, this thesis focuses on the separation of valuable metals Ni, Co, Li, and Mn from spent lithium-ion batteries.The solvent extraction and ion exchange are the methods used in this study.
According to the research results, adjust the leaching solution to pH=4, and it was passed through a column filled with M4195 resin for ion exchange separation. The resin selectively adsorbed Co and Ni was collected in the exchange tail. The loaded resin was eluted with 2N H2SO4, and separation and recovery of divalent cobalt and nickel ions from the eluted liquid have been carried out using sodium salts of Cyanex272 in kerosene. The percentage extraction of metal ions increased with increasing equilibrium pH. Cobalt was preferentially extracted over nickel with the extractants. Recovery of cobalt was achieved followed by stripping with H2SO4 at O:A ratio of1:1.
[1] 柯賢文, "鋰電池," 科學發展, no. 第482期, p. 50, 2013.
[2] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, no. 9, p. 3243, 2011, doi: 10.1039/c1ee01598b.
[3] 許荏賓, "溶劑萃取分離廢二次鋰電池有價金屬," 環境工程與管理系, 朝陽科技大學, 2016年, 2016.
[4] 劉如熹, "鋰離子二次電池材料簡介," (in 繁體中文), 化學, vol. 57, no. 2, p. 149, 1999, doi: 10.6623/chem.1999017.
[5] 廖世傑, "動力電池正負極材料發展趨勢," 工研院材料世界網.
[6] 鄭如翔、黃炳照, "鋰離子電池正極材料之發展," 化工, no. 第58卷第5期, p. 10, 2011.
[7] 方聖予、曹申, "稀貴金屬火法純化暨資源化技術," 工業材料雜誌, no. 371, pp. 48-57, 2017.
[8] 李清華, "稀貴金屬濕法冶金資源化技術," 工業材料雜誌, no. 371, pp. 58-63, 2017.
[9] 蘇英源, 冶金學. 2000.
[10] T. D. Reynolds, Unit operations and processes in environmental engineering. 1982.
[11] 張文青, "分離分析化學," 華東理工大學出版社, pp. 157-183, 2007.
[12] 陸九芳, 李總成, and 包鐵竹, 分離過程化學. 淸華大學出版社, 1993.
[13] M. Luqman, Ion Exchange Technology I: Theory and Materials. Springer Science & Business Media, 2012.
[14] A. A. Zagorodni, Ion exchange materials: properties and applications. Elsevier, 2006.
[15] C. Harland, "Ion exchange, Theory and Practice, Royal Society of Chemisty, Thomas Graham House," The Science Park, Cambridge, UK, 1994.
[16] G. Schmuckler, "Chelating resins—their analytical properties and applications," Talanta, vol. 12, no. 3, pp. 281-290, 1965. [Online].
[17] 朱屯, "萃取與離子交換," ed: 冶金工業出版社, 2005.
[18] 陳穩如, "新型選擇性樹脂的製備及其重金屬分選之應用研究," 碩士, 材料及資源工程系碩士班, 國立臺北科技大學, 台北市, 2002.
[19] 謝佳頴, "以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究," 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2012.
[20] 翁筱涵, "廢加氫脫硫觸媒中有價金屬之資源化研究," 碩士, 資源工程學系, 國立成功大學, 台南市, 2015.
[21] 丁桓如, 工业用水处理工程. 清华大学出版社有限公司, 2005.
[22] 曾柏豪, "以陰離子交換樹脂分離鎢、釩之研究," 碩士, 資源工程學系, 國立成功大學, 台南市, 2014.
[23] A. Da̧browski, Z. Hubicki, P. Podkościelny, and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, no. 2, pp. 91-106, 2004.
[24] R. R. Navarro, K. Tatsumi, K. Sumi, and M. Matsumura, "Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine," Water research, vol. 35, no. 11, pp. 2724-2730, 2001.
[25] P. Ling et al., "Adsorption of divalent heavy metal ions onto IDA-chelating resins: simulation of physicochemical structures and elucidation of interaction mechanisms," Talanta, vol. 81, no. 1-2, pp. 424-432, 2010.
[26] A. M. Donia, A. A. Atia, H. El-Boraey, and D. H. Mabrouk, "Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles," Separation and purification technology, vol. 49, no. 1, pp. 64-70, 2006.
[27] A. A. Atia, A. M. Donia, and K. Z. Elwakeel, "Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups," Reactive and Functional Polymers, vol. 65, no. 3, pp. 267-275, 2005.
[28] W. J. Weber, Physicochemical processes for water quality control. Wiley Interscience, 1972.
[29] 王九思, 陳學民, 肖舉強, and 伏小勇, "水處理化學," ed: 北京, 化學工業出版社, 第 189-217 頁, 2002.
[30] 施雅云, "廢脫硝觸媒中鉬及釩之資源化研究," 國立成功大學資源工程系研究所碩士論文, 2017.
[31] 蕭因秀, "ITO蝕刻廢液中銦金屬吸附回收之研究," 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2009.
[32] 葉子維, "分離廢鋰離子電池中有價金屬之研究," 2018.
[33] K.-L. Chiu and W.-S. Chen, "Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange," Science of Advanced Materials, vol. 9, no. 12, pp. 2155-2160, 2017.
[34] J. Hereijgers et al., "Separation of Co(II)/Ni(II) with Cyanex 272 using a flat membrane microcontactor: Extraction kinetics study," Journal of Membrane Science, vol. 499, pp. 370-378, 2016, doi: 10.1016/j.memsci.2015.10.070.
[35] K. C. N. N.B.Devi, V.Chakravortty, "<Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272>," Hydrometallurgy, vol. 54, no. 2-3, pp. 117-131, 2000.
[36] A. H. Blitz-Raith, R. Paimin, R. W. Cattrall, and S. D. Kolev, "Separation of cobalt (II) from nickel (II) by solid-phase extraction into Aliquat 336 chloride immobilized in poly (vinyl chloride)," Talanta, vol. 71, no. 1, pp. 419-423, 2007.