| 研究生: |
李家維 Li, Chia-Wei |
|---|---|
| 論文名稱: |
以腦波為基礎的模組化居家睡眠感測系統及其在阻塞性睡眠呼吸中止症和快速動眼期睡眠行為障礙評估的應用 A Modular EEG-Based Home Sleep Monitoring System and Its Applications in the Assessment of Obstructive Sleep Apnea and REM Sleep Behavior Disorder |
| 指導教授: |
梁勝富
Liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 居家睡眠檢查 、穿戴式裝置 、睡眠呼吸中止症 、快速動眼睡眠行為障礙 |
| 外文關鍵詞: | Home sleep testing, Wearable device, Sleep apnea, REM sleep behavior disorder (RBD) |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠障礙的準確診斷長期依賴於耗時且資源有限的實驗室睡眠檢查(PSG),而目前的居家睡眠檢測(HST)則普遍存在功能不同的技術限制:缺乏腦波(EEG)訊號的心肺監測裝置,因無法準確分期而低估呼吸中止指數(AHI),可能導致疾病嚴重性被誤判並影響後續治療決策;而另一類消費型腦波裝置則無法用於正式的呼吸障礙診斷。為克服此困境,本研究旨在開發並驗證一套完整的模組化居家睡眠監測系統。
此系統的核心為一可穿戴式腦波感測眼罩,其模組化的設計能依據不同使用需求,彈性整合多種感測器。在阻塞型睡眠呼吸中止症(OSA)的評估中,我們將眼罩與市售的ApneaLink Air裝置整合,以同步擷取腦波與呼吸訊號。此方法克服了傳統居家設備的限制,在32筆紀錄中,透過腦波訊號實現了精確的睡眠分期,與黃金標準比對,準確率達89.7%,Kappa值為0.82,並藉由偵測腦波覺醒事件與使用真實睡眠時間進行計算,有效校正了傳統無腦波量測設備對AHI的低估問題,與PSG的結果比較,亦證實本系統的準確性提升,尤其在重度患者的案例中。而在快速動眼期睡眠行為障礙(RBD)的評估中,我們則為眼罩擴充了下巴肌電圖(EMG)並與肢體慣性感測單元(IMU)模組結合,在10筆紀錄中成功捕捉了91.7%作為RBD核心診斷特徵的REM sleep without atonia (RSWA)事件,展現了其高度的應用彈性。
本論文成功驗證了一個能克服現有居家睡眠檢測設備功能限制的整合性平台,透過結合完整量測比對與臨床專家的判讀經驗,為實現準確、可靠且便利的居家睡眠評估提供了有效的解決方案,未來進入臨床應用,將可減少等待床位提早檢測,提高睡眠診斷的品質。
The accurate diagnosis of sleep disorders has long relied on time-consuming and resource-limited laboratory polysomnography (PSG). Existing home sleep tests (HSTs) generally face a technical limitation of functional division: cardiorespiratory monitoring devices lack electroencephalography (EEG) signals for accurate sleep staging, leading to an underestimation of the Apnea-Hypopnea Index (AHI), which can result in the misclassification of disease severity and impact subsequent treatment decisions. Meanwhile, consumer EEG devices cannot be used for formal respiratory diagnosis. To overcome this challenge, this study aims to develop and validate a complete, modular home sleep monitoring system.
The core of this system is a wearable EEG-sensing eyemask with a modular design that allows for the flexible integration of various sensors to meet different application needs. In the assessment of Obstructive Sleep Apnea (OSA), we integrated the eyemask with a commercial ApneaLink Air device to simultaneously acquire EEG and respiratory signals. This method overcomes the limitations of traditional home devices. In 32 recordings, it achieved accurate sleep staging via EEG signals, with an accuracy of 89.7% and a Kappa value of 0.82 when compared against the gold standard. By detecting EEG arousal events and using total sleep time for calculation, it effectively corrects the AHI underestimation common in traditional non-EEG devices. Furthermore, a comparison with PSG results also confirmed an improvement in the system's accuracy, especially in cases of severe patients. In the assessment of REM Sleep Behavior Disorder (RBD), we expanded the eyemask with a chin electromyography (EMG) module and combined it with limb inertial measurement unit (IMU) modules, successfully capturing 91.7% of REM sleep without atonia (RSWA) events—a core diagnostic feature of RBD—in 10 recordings, demonstrating its high application versatility.
This thesis successfully validates an integrated platform that can overcome the functional limitations of existing home sleep test devices. By combining a comprehensive measurement comparison with the interpretive experience of clinical experts, this system provides an effective solution for achieving accurate, reliable, and convenient home sleep assessment. Its potential for future clinical application could improve the quality of sleep diagnostics by reducing wait times and enabling earlier detection.
Alakuijala, A., Tervamäki, J., Maasilta, P., & Bachour, A. (2019). Predicting technical success in home sleep apnea test. Journal of sleep disorders: treatment & care, 8(1), 1000226.
Arnal, P. J., Thorey, V., Debellemaniere, E., Ballard, M. E., Bou Hernandez, A., Guillot, A., Jourde, H., Harris, M., Guillard, M., Van Beers, P., Chennaoui, M., & Sauvet, F. (2020). The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep, 43(11). https://doi.org/10.1093/sleep/zsaa097
Berry, R. B., Quan, S. F., Abreu, A. R., American Academy of Sleep, M., Bibbs, M. L., DelRosso, L., Harding, S. M., Mao, M. M., Plante, D. T., & Pressman, M. R. (2020). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine. https://books.google.com.tw/books?id=XT3dzQEACAAJ
Besedovsky, L., Lange, T., & Haack, M. (2019). The Sleep-Immune Crosstalk in Health and Disease. Physiological Reviews, 99(3), 1325-1380. https://doi.org/10.1152/physrev.00010.2018
Borghammer, P., & Van Den Berge, N. (2019). Brain-First versus Gut-First Parkinson's Disease: A Hypothesis. J Parkinsons Dis, 9(s2), S281-S295. https://doi.org/10.3233/JPD-191721
Braun, M., Stockhoff, M., Tijssen, M., Dietz-Terjung, S., Coughlin, S., & Schöbel, C. (2024). A Systematic Review on the Technical Feasibility of Home-Polysomnography for Diagnosis of Sleep Disorders in Adults. Current Sleep Medicine Reports, 10(2), 276-288. https://doi.org/10.1007/s40675-024-00301-z
Byun, J. H., Kim, K. T., Moon, H. J., Motamedi, G. K., & Cho, Y. W. (2019). The first night effect during polysomnography, and patients' estimates of sleep quality. Psychiatry Research, 274, 27-29. https://doi.org/10.1016/j.psychres.2019.02.011
Chang, D. W., Liu, Y. D., Young, C. P., Chen, J. J., Chen, Y. H., Chen, C. Y., Hsu, Y. C., Shaw, F. Z., & Liang, S. F. (2012). Design and Implementation of a Modularized Polysomnography System. IEEE Transactions on Instrumentation and Measurement, 61(7), 1933-1944. https://doi.org/10.1109/TIM.2012.2182853
Choi, J. H., Lee, B., Lee, J. Y., & Kim, H. J. (2018). Validating the Watch-PAT for Diagnosing Obstructive Sleep Apnea in Adolescents. Journal of Clinical Sleep Medicine, 14(10), 1741-1747. https://doi.org/PII jc-18-0002910.5664/jcsm.7386
Dauvilliers, Y., Schenck, C. H., Postuma, R. B., Iranzo, A., Luppi, P. H., Plazzi, G., Montplaisir, J., & Boeve, B. (2018). REM sleep behaviour disorder. Nature Reviews Disease Primers, 4. https://doi.org/ARTN 1910.1038/s41572-018-0016-5
Erman, M. K., Stewart, D., Einhorn, D., Gordon, N., & Casal, E. (2007). Validation of the ApneaLink™ for the Screening of Sleep Apnea: a Novel and Simple Single-Channel Recording Device. Journal of Clinical Sleep Medicine, 3(4), 387-392. <Go to ISI>://WOS:000209776300009
Ferber, R., Chair, R., Millman, R., Coppola, M., Fleetham, J., Murray, C. F., Iber, C., McCall, V., Nino-Murcia, G., & Pressman, M. (1994). ASDA standards of practice: portable recording in the assessment of obstructive sleep apnea. Sleep-Lawrence, 17(4), 378.
Fonseca, P., Weysen, T., Goelema, M. S., Most, E. I. S., Radha, M., Scheurleer, C. L., van den Heuvel, L., & Aarts, R. M. (2017). Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Sleep, 40(7). https://doi.org/ARTN zsx09710.1093/sleep/zsx097
Horsager, J., Knudsen, K., & Sommerauer, M. (2022). Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiology of Disease, 164. https://doi.org/ARTN 10562610.1016/j.nbd.2022.105626
Hsu, C.-H. (2024). 用於居家睡眠監測的模組化與同時多型態生理訊號整合系統. Master's thesis. 國立成功大學. https://hdl.handle.net/11296/d883ta
Jaoude, M. A., Ravi, A., Niu, J., Banville, H., Torres, N. F., & Aimone, C. (2023, 24-27 April 2023). Automated Sleep Staging on Wearable EEG Enables Sleep Analysis at Scale. 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER),
Jean-Louis, G., Zizi, F., Clark, L. T., Brown, C. D., & McFarlane, S. I. (2008). Obstructive Sleep Apnea and Cardiovascular Disease: Role of the Metabolic Syndrome and Its Components. Journal of Clinical Sleep Medicine, 4(3), 261-272. <Go to ISI>://WOS:000209776900012
Kapur, V. K., Auckley, D. H., Chowdhuri, S., Kuhlmann, D. C., Mehra, R., Ramar, K., & Harrod, C. G. (2017). Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medicine, 13(3), 479-504. https://doi.org/10.5664/jcsm.6506
Kim, S. (2023). The Usefulness of Apnealinktm as a Screening Test for Diagnosis of Obstructive Sleep Apnea. Sleep, 46, A249-A249. <Go to ISI>://WOS:001008232900564
Lee, H. K., Lee, J., Kim, H., & Lee, K. J. (2013). Automatic snoring detection from nasal pressure data. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 6870-6872. https://doi.org/10.1109/EMBC.2013.6611136
Light, M. P., Casimire, T. N., Chua, C., Koushyk, V., Burschtin, O. E., Ayappa, I., & Rapoport, D. M. (2018). Addition of frontal EEG to adult home sleep apnea testing: does a more accurate determination of sleep time make a difference? Sleep and Breathing, 22(4), 1179-1188. https://doi.org/10.1007/s11325-018-1735-2
Lin, P. (2024). 基於臨床需求的居家睡眠檢查判讀與報告系統. Master's thesis. 國立成功大學. https://hdl.handle.net/11296/u58j6b
Massie, F., Vits, S., Verbraecken, J., & Bergmann, J. (2025). The evaluation of a novel single-lead biopotential device for home sleep testing. Sleep, 48(4), zsae248.
McCarter, S. J., St Louis, E. K., & Boeve, B. F. (2012). REM Sleep Behavior Disorder and REM Sleep Without Atonia as an Early Manifestation of Degenerative Neurological Disease. Current Neurology and Neuroscience Reports, 12(2), 182-192. https://doi.org/10.1007/s11910-012-0253-z
McNicholas, W. T., & Pevernagie, D. (2022). Obstructive sleep apnea: transition from pathophysiology to an integrative disease model. Journal of Sleep Research, 31(4). https://doi.org/ARTN e1361610.1111/jsr.13616
Nigro, C. A., Dibur, E., Malnis, S., Grandval, S., & Nogueira, F. (2013). Validation of ApneaLink Ox™ for the diagnosis of obstructive sleep apnea. Sleep and Breathing, 17(1), 259-266. https://doi.org/10.1007/s11325-012-0684-4
Pitkänen, M., Nath, R. K., Korkalainen, H., Nikkonen, S., Mahamid, A., Oksenberg, A., Duce, B., Töyräs, J., Kainulainen, S., & Leppänen, T. (2024). Respiratory event index underestimates severity of sleep apnea compared to apnea-hypopnea index. Sleep Advances, 5(1). https://doi.org/ARTN zpad05410.1093/sleepadvances/zpad054
Raschellà, F., Knoops-Borm, M., Sekeri, M., Andries, D., Oloo, M., Moudab, I., Musaka, S., Mueller, S., Stockhoff, M., & Tijssen, M. (2022). Clinical validation of a wireless patch-based polysomnography system: a pilot study. medRxiv, 2022-2008.
Raschellà, F., Scafa, S., Puiatti, A., Moraud, E. M., & Ratti, P. L. (2023). Actigraphy Enables Home Screening of Rapid Eye Movement Behavior Disorder in Parkinson's Disease. Annals of Neurology, 93(2), 317-329. https://doi.org/10.1002/ana.26517
Rosen, I. M., Kirsch, D. B., Carden, K. A., Malhotra, R. K., Ramar, K., Aurora, R. N., Kristo, D. A., Martin, J. L., Olson, E. J., Rosen, C. L., Rowley, J. A., Shelgikar, A. V., & Board, A. A. S. M. (2018). Clinical Use of a Home Sleep Apnea Test: An Updated American Academy of Sleep Medicine Position Statement. Journal of Clinical Sleep Medicine, 14(12), 2075-2077. https://doi.org/10.5664/jcsm.7540
Saletu, M. T., Kotzian, S. T., Schwarzinger, A., Haider, S., Spatt, J., & Saletu, B. (2018). Home Sleep Apnea Testing is a Feasible and Accurate Method to Diagnose Obstructive Sleep Apnea in Stroke Patients During In-Hospital Rehabilitation. Journal of Clinical Sleep Medicine, 14(9), 1495-1501. https://doi.org/10.5664/jcsm.7322
Santos-Silva, R., Sartori, D. E., Truksinas, V., Truksinas, E., D Alonso, F. F. F., Tufik, S., & Bittencourt, L. R. A. (2009). Validation of a Portable Monitoring System for the Diagnosis of Obstructive Sleep Apnea Syndrome. Sleep, 32(5), 629-636. https://doi.org/DOI 10.1093/sleep/32.5.629
Viniol, C., Galetke, W., Woehrle, H., Nilius, G., Schoeurobel, C., Randerath, W., Leiter, J., Canisius, S., & Schneider, H. (2025). Clinical validation of a wireless patch-based polysomnography system. Journal of Clinical Sleep Medicine, 21(5), 813-823. https://doi.org/10.5664/jcsm.11524
校內:2030-08-21公開