| 研究生: |
許淑婷 Hsu, Su-Ting |
|---|---|
| 論文名稱: |
利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究 Using the Fast Messy Genetic Algorithm and the Simulation Mechanism to Develop the Optimal Process for Design Project |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 反覆設計 、設計程序規劃 、資訊流 、模擬機制 、快速混雜基因演算法 |
| 外文關鍵詞: | fmGA, Simulation mechanism, Design process planning, Iterative design, Information flows |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設計專案乃由專案目標及業主需求逐步解析出專案之作業項目,而其工作內容大多在處理資訊,但由於作業所需之資訊內容多具不確定性,因此設計作業往往需透過反覆資訊傳遞及溝通方能得到一合適的設計結果,而反覆資訊傳遞之範圍可能橫跨多個設計作業項目,形成一個或數個反覆執行迴圈,迴圈中作業項目越多,越易導致設計作業的缺失。由於設計作業間之關係大多取決於資訊的流向,因此有必要從資訊流角度解析作業項目並尋求最佳之設計作業程序。
過去相關研究提出以建立設計作業項目間之相依關係結構矩陣或利用模擬方法,來處理作業間反覆設計之問題,其結果皆顯示良好的設計作業程序將提升作業項目間資訊傳遞之流暢性,減少猜測資訊所造成的作業錯誤,因而大幅改善整體設計專案之執行結果。然而,過去對不同設計作業程序,於設計專案資訊傳遞及設計團隊成員間溝通狀況有所差異之情形並未多作考量,致使評估結果產生偏差。此外,應用相依關係結構矩陣於作業程序規劃輔助時,其建構之矩陣規模乃隨著作業項目的數量之增加而成長,因而在處理複雜專案所衍生的數量龐大之作業項目程序規劃上,亦容易產生規劃時間過長而導致運作效率不佳之問題。
因此本研究針對上述程序規劃準則及規劃效率之問題,建立一以專案組織結構為觀點去辨別作業程序內部資訊傳遞差異情形之模擬機制,並在促進規劃效率方面,應用快速混雜基因演算法之於大型排列組合問題之求解能力,建構為一完整之設計作業程序規劃之最佳化模式,以期有效搜尋專案之各種作業程序組合中,具有最佳資訊傳遞性之作業程序,從而降低資訊傳遞不佳而導致作業失敗機率增加及成本與時間之浪費。
經由案例之測試及驗證結果顯示本研究開發之最佳化設計作業程序規劃模式,在結合模擬機制及快速混雜基因演算法後,確可規劃出合適之設計作業程序,並於合理時間內有效尋得最佳解,以提供管理者於處理設計作業程序規劃問題時之參考。
The design project is typically involved with processing a large amount of information from various participants. However, owing to the uncertainty within the information, engineers have to repeatedly perform design activities, such as exchanging information with other participants or processing information, to produce an appropriate result. This persistent information exchanging process may involve many activities and come into one or several iterative design loops. As there are more activities involving within the iteration loop, the productivity of the design project could fall down easily. Furthermore, because the relationships among the design activities are mainly determined by information flows, the sequence of performing design activities should be properly planned to avoid unnecessary iteration loops. Therefore, it is essential to develop a model that can improve the productivity of the design phase by reducing the unnecessary iterations loops.
Dependency structure matrix (DSM) and simulation are used methods to describe the design process in this research. By employing DSM, the relationships and the sequence of the design activities can be identified. Many researchers had developed various models to optimize the design process according to DSM or simulation method. However, the impact of information processing or communication within the indifferent design process is not thoroughly considered in these studies. In addition, as the number of activities within DSM increases, the optimization process becomes computationally inefficient. Therefore, it is necessary to build a more efficient model which not only thoroughly consider the impact of iteration loops but also find the optimal design process for the large-size design project.
In this research, a simulation mechanism is applied to evaluating the design process. Furthermore, fast messy genetic algorithm (fmGA) is employed along with the simulation mechanism to build the optimization model of the design process. Results showed that, based on the proposed model, the impact of the iteration loops can be clearly identified and reduced. In addition, engineers can find the optimal design process for the large-scale design project efficiently with the computer implementation.
1.Altus, S. S., Kroo, I. M., and Gage, P, J.“A genetic algorithm for scheduling and decomposition of multidisciplinary design problems.”Journal of Mechanical Design, 118(4),486-489,(1996).
2.Alkayyali, O. J., Mansour, W. O. and Minkarah, I. A.“How effective is CPM in planning and controlling construction projects?”Proceedings of the CIB W-65 Conference, Trinidad September, 849-859,(1993).
3.Arditi, D., and Lee, D. E.“Assessing the Corporate Service Quality Performance of Design-build Contractors Using Quality Function Deployment.”Construction Management and Economics,21,175-185, (2002).
4.Austin, S., Baldwin, A., and Newton, A.“A data flow model to plan and manage the building design process.”Journal of Engineering Design, 7(1), 3-25, (1996).
5.Austin, S., Baldwin, A., Li, B., and Waskett, P.“Analytical Design Planning Technique: a Model of the Detailed Building Design Process.”Design Studies, 20, 279-296,(1999).
6.Austin, S., Baldwin, A., Li, B., and Waskett, P.“Analytical Design Planning Technique(ADePT): A Dependency Structure Matrix tool to Schedule the Building Design Process.”Construction Management and Economics, 18,173-182,(2000).
7.Baldwin, A. N., Austin, S. A., Hassan, T. M., and Thorpe, A.“Planning Building Design by Simulating Information Flow.”Automation in Construction, 8, 149-163,(1998).
8.Baldwin, A. N., Austin, S. A., Hassan, T. M., and Thorpe A.“Modeling information flow during the conceptual and schematic stages of building design.”Construction Management and Economics, 17, 155-167,(1999).
9.Browning T. R.“Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions.”Transactions on Engineering Management, IEEE, 48(3), 292-306,(2001).
10.Choo, H. J., Hamoond, J., Tommelein, I.D., Austin, S. A., and Ballard, G.. “DePlan: A Tool for Integrated Design Management.”Automation in Construction, 13, 313-326,(2004).
11.Chua, D.K.H., Tyagi, A., Ling, S., and Bok, S.H.“Process-parameter-interface model for design management.”Journal of Construction Engineering and Management, 129(6), 653-663,(2003).
12.Christainsen, R. T., Modeling Efficiency and Effectiveness of Coordination in Engineering Design Teams. Unpublished Ph, D Thesis, Stanford University, (1993).
13.Deb, Kalyanmoy, and Goldberg, David E. mGA in C: A Messy Genetic Algorithm in C. Illinois Genetic Algorithms Laboratory, University of Illinois At Urbana-Champaign, Urbana Illinois, (1991).
14.Dorf, R. C., and Raton, E. B.“The design structure matrix.”in Technology Management Handbook, FL:Chapman & Hall/CRCnetBASE, 103-111, (1999).
15.Eldin, N., and Hikle, V.“Pilot Study of Quality Function Deployment in Construction Project.”Journal of Construction Engineering and Management, 129(3), 314-329,(2003).
16.Goldberg, D. E.“Messy genetic algorithms: Motivation, analysis, and first results.”Complex Systems, 3(5), 496-530,(1989).
17.Goldberg, D. E., Deb, K. and Clark, J. H.“Genetic algorithms, noise and the sizing of populations.” Complex Systems, 6, 333-362,(1992).
18.Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G..“Rapid Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms.”Proceedings of the Fifth International Conference on Genetic Algorithms, 56-64, (1993).
19.Govers, C. P. M.“What and how about quality function deployment (QFD).”International Journal of Production Economics, 46-47, 575-585,(1996).
20.Galbraith, J. R. Organization Design. Addison-Wesley, Reading, MA, (1977).
21.Hauser, J. R., and Clausting D. The house of quality, Harvard Business Review.
22.Huovila, P., Koskela, L., Lautanala, M. and Tanhuanpaa, V.-P.“Use of the design structure matrix in construction.”Proceedings of the 3rd International Workshopon Lean Construction, Albuquerque, (1995)
23.Jin, Y. and Levitt, R. E.“The Virtual Design Team: A Computational Model of Project Organizations.”Working Paper Nr. 43, CIFE, Stanford University, Stanford, CA,(1996).
24.Jin, Y., Levitt, R. E., Kunz, J. C., and Christiansen T. R.“The Virtual Design Team: A Computer Simulation Framework for Studying Organizational Aspects of Concurrent Design.”Simulation, 64(3), 42-57,(1995).
25.Jin, Y., Levitt, R. E., and Kunz, J. C.“The Virtual Design Team: A Computational Simulation Model of Project Organizations.”Communications of the Association for Computing Machinery, 41(11), 84-92,(1998).
26.Knjazew, D. OmeGA, A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems. Kluwer, MA. (2003).
27.Kapasouris, P., Serfaty, D.,Deckert, J. C., Wohl, J. G., and Pattipati K.R. “Resource Allocation and Performance Evaluation in Large Human-Machine Organizations.”Transactions on Systems, IEEE, 21(3), 521-532,(1991).
28.McCulley, C., and Bloebaum, C. L.“A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems.” Structural Optimization, 12, 186-201,(1996).
29.Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 3rd Edition. Springer. New York.(1996).
30.Newton, A. J. “The Planning and Management of Detailed Building Design.”PhD Thesis, Loughborough University of Technology, UK. (1995).
31.Nicholson, M. P., and Naamani, Z.“Managing Architectural Design- a Recent Survey.”Construction Management and Economic, 10, 479-487, (1992).
32.Lockamy, A., and Khurana A.“Quality function deployment: total quality management for new product design.”International Journal of Quality & Reliability Management, 12(6), 73-84,(1995).
33.Levitt, R.E., Thomsen, J., Christiansen T. R., Kunz, J. C., Jin, Y., and Nass C. “Simulating Project Work Processes and Organizations: Toward a Micro-Contingency Theory of Organizational Design.”Management Science, 45(11), 1749-1495,(1999).
34.Rogers, J. L.“DeMAID – a design manager’s aide for intelligent decomposition user’s guide.”NASA TM 101575,(1989).
35.Rogers, J. L.“DeMAID/GA user’s guide – Design managers aid for intelligent decomposition with a genetic algorithm.”NASA TM 110241,(1996).
36.Rogers, J. L., McCulley, C. M., Bloebaum, C. L.“Integrating a genetic algorithm into a knowledge-based system for ordering complex design processes.”NASA TM 110247,(1996).
37.Rogers, J. L., and Padula, S. L.“An intelligent advisor for the design manager.”NASA TM 101558, (1989).
38.Smith, R. P., and Morrow, J. A.“Product Development Process Modeling.”Design Studies, 20, 237-261,(1999).
39.Steward, D. V.“Partitioning and tearing systems of equations.”w SIAM Journal on Numerical Analysis, 2(2), 345-365, (1965).
40.Thomsen, J., Levitt, R. E., and Nass, C. I.“The Virtual Team Alliance (VTA): Extending Galbraith’s Information-Processing Model to Account for Goal Incongruency.”Computational & Mathematical Organization Theory, 10, 349-372,(2004).
41.Wang, W. C., Liau, T. S., and Liu, J. J.,“Applying Simulation Technique to Model Design Iterations.”, ISARC, Korea, (2004).
42.王思琳,從資訊流建立規劃設計作業程序最佳化之模式,國立成功大學土木工程學系碩士論文,民國94年。
43.吳獻堂,應用模糊理論與電腦模擬分析營建操作生產力-COST電腦模擬程式之介紹,朝陽科技大學營建工程系,民國89年。
44.陳惠娟,結合QFD及模糊基因演算法於工程設計之應用,國立成功大學土木工程學系碩士論文,民國93年。
45.蔡雅雯,營建作業模擬系統邏輯控制元件之研究,國立中央大學土木工程學系碩士論文,民國91年。
46.姜林杰佑、張逸輝、陳家明、黃家祚,系統模擬eM-Plant(SiMPLE++)操作與實務,華泰文化事業公司,台北,民國90年。