| 研究生: |
邱昱凱 Chiou, Yu-Kai |
|---|---|
| 論文名稱: |
改善車輛保險桿樑吸能性的最佳化設計 Design of Automotive Bumper Beam for Improving Energy Absorbing Capacity Based on Optimization |
| 指導教授: |
黃才烱
Huang, Tsai-Jeon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 行人碰撞 、車輛保險桿樑 、有限元素法 、田口品質工程 、響應曲面法 、克利金法 、最佳化設計 |
| 外文關鍵詞: | Pedestrian Safety Bumper Beam, Finite Element Method, Kriging Response Surface Method, Taguchi Method, Optimum Design |
| 相關次數: | 點閱:178 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著車輛工業的進步以及普及,在人口密集的都市裡,行人車禍的發生越來越頻繁,其中又以下肢傷害占了非常大的比例。下肢傷害需要非常久的時間復原以及不斷的復健,且伴隨著永久傷殘的可能,因此行人下肢保護的議題不容忽視。在車輛安全逐漸受到重視的現代,各國都已經建立了相關的法規以約束車輛製造商在相關方面的重視,因此許多車輛都已經裝備有保險桿系統的安全設計,例如柔軟的保險桿以及用於吸收能量的泡棉。儘管如此,下肢傷害依然無法全面地避免,原因在於剛性遠高於人體下肢的車輛前保險桿樑,係碰撞過程中帶給人體傷害的主要來源。因此,本論文的研究宗旨在於改變保險桿樑的結構設計增加其吸能性,試圖降低給行人帶來的傷害,同時在低速碰撞的條件下能夠保持足夠的剛性以避免車體在低速撞擊意外中過於容易受損。
在研究過程中,本論文將會先決定一個保險桿樑的幾何型態,並且定義設計參數。接著使用變異數分析(ANOVA)的方式分析各參數之貢獻度,可以將貢獻度低的參數去除以簡化設計難度。而車輛結構的完整性與行人安全保護的問題本身就是一個經典的最佳化問題,故本論文就以碰撞時保險桿樑的能量吸收量以及塑性變形量作為最佳化問題的兩個目標函數。
但是以經典力學的方式是幾乎不可能推導出結構設計參數與這兩個目標函數的關係式,因此本論文就以統計學中的克利金方法理論來進行響應曲面的建模工作。一旦建立完目標函數的定義,執行最佳化就變得非常可行。最後將本論的最佳設計進行高速下肢撞擊的有限元素模擬,以說明本論文之研究方法對於行人下肢保護帶來的改善程度。
Pedestrian car accidents have become more frequent in densely populated cities where lower extremity injuries with very large proportion, therefore, pedestrian lower extremity protection issue can’t be ignore. Many countries have established relevant regulation as constraint to automotive manufacture to force them value this issue. Thus, there have been many cars equipped safety design for bumper beam system. Nevertheless, lower extremity injury still can’t be absolutely avoided because of high stiffness of bumper beam which is far more than pedestrian lower limb’s. It’s the main source of the damage to human body during crash impact progress.
The main topic of this study is to improve the energy absorbing capacity of bumper beam by changing its geometry shape. Intend to decrease the damage to pedestrians and remain enough stiffness to avoid crush easily under low speed impact accident.
In this study, bumper beam cross-section shape will be defined first, as well its design variables. The choice between integrity of vehicle construction and pedestrian safety is a classical optimum problem, hence it’ll be defined the energy absorption and the plastic deformation of bumper beam during crash impact progress as two objective function for optimization.
In this study, the task of modeling response surface will be developed by Kriging method theory which is a branch of geostatistics. Then optimization can be implement. Finally, high speed lower extremity impact test will be implemented via finite element simulation with the optimum design, to evaluate the improvement of the protection for pedestrian lower extremity.
[1] EXTREME TECH. Available: https://www.extremetech.com/wp-content/uploads/2015/07/BMW-7-Series-LF-frame-P90176663_highRes.jpg
[2] Davoodi, M. M., Sapuan, S. M., Aidy, A., Abu Osman, N. A., Oshkour, A. A., and Wan Abas, W. A. B., "Development process of new bumper beam for passenger car: A review." Materials & Design, vol. 40, pp. 304-313, 2012.
[3] Cheon, S. S., Choi, J. H., and Lee, D. G., "Development of the composite bumper beam for passenger cars." Composite Structures, 32:4919 , 1995.
[4] Marzbanrad, J., Alijanpour, M., and Kiasat, M. S., "Design and analysis of an automotive bumper beam in low-speed frontal crashes." Thin-Walled Structures, vol. 47, pp. 902-911, 2009.
[5] UNITED NATIONS AGREEEMENT, "Uniform Provisions Concerning the Approval of Vehicles with Regard to Their Front and Rear Protective Devices." E.C.E., United Nation, 1994.
[6] Belingardi, G., Beyene, A. T., and Koricho, E. G., "Geometrical optimization of bumper beam profile made of pultruded composite by numerical simulation." Composite Structures, vol. 102, pp. 217-225, 2013.
[7] INSURANCE INSTITUTE FOR HIGHWAY SAFTY, "Bumper Test Protocol Version VI." IIHS, Alington, 2007.
[8] Park, D. K., Jang, C. D., Lee, S. B., Heo, S. J., Yim, H. J., and Kim, M. S., "Optimizing The Shape of a Bumper Beam Section Consider Pedestrian Protection." International Journal of Automotive Technology, vol. 11, pp. 489-494, 2010.
[9] U.S. DEPARTMENT OF TRANSPORTATION, "Laboratory Test Procedure for Regulation Part 581 Bumper Standard." FMVSS, Washington, 1990.
[10] K. J. Kim, S. T. W., "Effect of Structural Variables on Automotive Body Bumper Impact Beam." International Journal of Automotive Technology, vol. 9, pp. 713-717, 2008.
[11] P. J. Schuster, "Current Trends in Bumper Design for Pedestrian Impact." SAE International, California, 2006.
[12] Concept TECH. Available: http://www.concept-tech.com/files/291_2082_/PDS_A4_Bumper+Pendulum_200416.pdf
[13] Mizuno, Y., "Summary of IHRA Pedestrian Safety WG Activities - Proposed Test Method to Evaluate Pedestrian Protection Afforded by Passenger Cars." International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0138, 2005.
[14] Yang, J., "Review of Injury Biomechanics in Car-Pedestrian Collisions." International Journal of Vehicle Safety (IJVS), vol. 1, No. 1/2/3, 2005.
[15] Milwich, M., "Thermoplastic Briad Pultrusion." International Committee of Composite Materials, Edinburgh (UK), pp.27-31, 2009.
[16] Saiphon, C., C., Bank Lawrence, E., Plesha Michel, "Progressive Tearing Failure in Pultruded Composite Profiles." Composite Structures, 63: pp45-52, 2004.
[17] Boria, S., G., Belingardi, "Numerical Investigation of Energy Absorbers in Composite Materials for Automotive Applications." International Journal of Crashworthiness, vol. 17(), pp. 345-356, 2012.
[18] Raymond, H. M., Douglas, C. M., "Response Surface Methodology : Process and Product Optimization Using Designed Experiments." Wiley, New York, 2002.
[19] George, E. P. B., Norman, R. D., "Empirical Model-Building and Response Surfaces." Wiley, New York, 1987.
[20] Pan, J. N., "Product and Process Quality Improvement Using a Computerized Response Surface Methodology." Tainan, 2002.
[21] Wang, G., Shan, S., "Review of Metamodeling Techniques in Support of Engineering Design Optimization." Journal of Mechanical Design, 129:370-379, 2007.
[22] Montgomery, D., "Design and Analysis of Experiments." Wiley, New Jersey, 2005.
[23] Haykin, S., "Neural Networks, a Comprehensive Foundation." Prentice Hall, New Jersey, 1998.
[24] Simpson, T., Booker, A., Ghosh, D.,Ginuta, A., Koch, P., Yang, R., "Approximation Method in Multidisciplinary Analysis and Optimization - a Panel Discussion." Struct. Multidisc. Optim., 27:302-313, 2004.
[25] Sondergaard, J., Lophaven, S., Nielsen, H., "Dace, a MATLAB Kriging Toolbox." Techinical University of Denmark Techical Report, IMM-TR-2002-12, 2002.
[26] Arora, J. S., "Introduction to Optimum Design." Elsevier, Iowa City, 2012.
[27] Sharpe, N., Vendrig, R., "Improved Design for Frontal Protection." TNO Automot, 2001.
[28] ANSYS, "ANSYS Mechanical User's Guide." ANSYS, Inc., Canonsburg, 2013.
[29] Dange, M. V., Buktar, R. J., Raykar, N. R., "Design and Analysis of an Autoumotive Front Bumper Beam for Low-Speed Impact." IOSR Journal of Mechanical and Civil Engineering, vol. 12, pp. 17-27, 2015.
[30] Liu, Y., "ANSY and LS-DYNA used for structure analysis." International Journal of Computer Aided Engineering and Technology, vol. 1, pp. 31-44, 2008.
[31] Mullur, A. A. M., A., "Metamodeling Using Extended Radial Basiss Functions : A Comparative Approach." Engineering with Computers, vol. 21, pp. 203-217, 2006.
[32] Krige, D. G., "A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand." University of Witwatersrand, Johannesburg, 1951.
[33] Agterberg, F. P., "Georges Matheron : Founder of Spatial Statistics." Earth Sciences History, vol. 23, pp. 205-334, 2007.
[34] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., "Optimization Using Surrogate Objectives on a Helicopter Test Example." Center of Research on Parallel Computation, Houston, 1997.
[35] Park, K., Oh, P. K., Lim, H., "The Application of The CFD and Kriging Method to an Optimization of Heat Sink." International Journal of Heat and Mass Transfer, no.49, pp. 3439-3447, 2006.
[36] Nyquist, G. W., "Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading." Society of Automotive Engineers (SAE), Paper No. 861925, 1986.
[37] Kajzer, J., Cavallero, C., Bonnoit, J., Morjane, A., Ghanouchi, S., "Response of the Knee Joint in Lateral Impact : Effect of Bending Moment." In Proceedings of International IRCOBI Conference, Eindhoven, the Netherlands, 1993, pp. 105-116.
[38] EEVC, "EEVC Working Group 10 Report-Proposals for Methods to Evaluate Pedesrian Protection for Passenger Cars." European Experimental Vehicles Committee, 1994.
[39] EEVC, "EEVC Working Group 17 Report-Improved Test Methods to Evaluate Pedesrian Protection Afforded by Passenger Cars." European Experimental Vehicles Committee, 1998.
[40] Jensen, M. R., Graf, O., Bui, K. D., Burger, M., Maurath, C. A., "LSTC Legform Impactor Finite Element Model." LSTC Inc, 2014.
[41] Available: https://www.ccsa.gmu.edu/models/2012-toyota-camry/
[42] Haldar, A., Mahadevan, S., "Probability, Reliability, and Statistical Method in Engineering Design." John Wiley, Sons, Inc, 2000.
[43] Multivariate normal distribution from Wikipedia. Available: https://en.wikipedia.org/wiki/Multivariate_normal_distribution
[44] Flecther, R., Reeves, R. M., "Function Minimization by Conjugate Gradients." The Computer Journaul, vol. 7, pp. 149-160, 1964.
[45] Conjugate gradient method form Wikipedia. Available: https://en.wikipedia.org/wiki/Conjugate_gradient_method
中文文獻:
[46] 小栗富士雄,小栗達男,標準機械設計圖表便覽,眾文圖書,新北市,台灣,2006。
[46] 吳復強,產品穩健設計:田口方法之原理與應用,全威圖書有限公司,台北市,台灣,2005
[47] 徑向基(Radial basis function)神經網路、核函數的一些理解,經由:http://blog.csdn.net/heyijia0327/article/details/38090229
[48] 劉智豪,壓力瓶在不確定因素之下之構形最佳化設計,成功大學,台南市,台灣,2008。
[49] 薛仲宏,類神經網路與一般克利金法在空間內插值之比較,中華大學,新竹市,台灣,2005。