簡易檢索 / 詳目顯示

研究生: 黃信文
Huang, Shin-Wen
論文名稱: 紊流場與均勻流場對垂直軸風機影響之研究
The Performance of a Vertical Axis Wind Turbine under Steady and Turbulent Flow Conditions
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 110
中文關鍵詞: 垂直軸風力機紊流強度風場瞬時擾動
外文關鍵詞: VAWT, turbulence, fluctuation of wind velocity
相關次數: 點閱:174下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以風洞實驗的方式研究垂直軸風力發電機的特性,研究內容分成兩部份:第一部分探討垂直軸風力機在均勻風場、柵網紊流兩種不同的來流風場其輸出功率差異,研究結果顯示,紊流場對其效率具有較佳的表現,主要差異為高風速的區域;且輸出功率與風速為乘冪趨勢關係,紊流場高於均勻流場的指數,並略高於風速的三次方。第二部份為量測垂直軸風力機運轉時葉片周圍的瞬時擾動,研究結果發現紊流場下的自由流因具有較高擾動能量,會壓制葉片本身的氣動現象,譬如翼後緣渦流剝離。於較高尖端速度比時,攻角變化幅度小,且前後兩葉片經過同相位角的時間間隔極短,使翼後緣渦流無足夠時間形成。紊流場雖具有一定的擾動能量,但經相位平均後的周圍流場特性具有高度相似性。

    This study is aimed to study the characteristic of a VAWT by Wind Tunnel Experiment. Experiments were first carried out to compare the VAWT working in uniform flow and turbulent flow generated by a grid upstream, and discuss the difference of power generation and performance. The result indicates that turbulent flow has better performance. The main difference occurs at the high wind speed, the power generator is proportional to the power of wind velocity. The exponent obtained under the turbulent flow condition is higher than that under the uniform flow condition, and slightly higher than the cube of wind velocity.
    Experiments were made to study the velocity fluctuations produced by the rotating blades. The result indicates the turbulence flow field contained higher fluctuation energy, meanwhile it suppresses the aerodynamic characteristic, such as the vortex shedding of trailing edge. The variation of angle of attack is much smaller during the high tip speed ratio, the time period is much shorter between two blades passes through the same azimuth angle, it causes the vortex shedding of trailing edge have no enough time to develop. The ensemble average results of wind fluctuation around VAWT is highly similar between turbulence flow and uniform flow.

    摘要.................................II ABSTRACT............................III 誌謝..................................V 目錄..................................VI 表目錄...............................IX 圖目錄................................X 符號說明..............................XV 第一章 緒論.............................1 1.1前言................................1 1.2研究背景.............................3 1.3研究動機.............................5 1.4研究內容及大綱........................6 第二章 文獻回顧與基礎理論..................7 2.1文獻回顧.............................7 2.2座標系統............................12 2.3相對攻角 (RELATIVE AOA)變化..........13 2.4雷諾數影響(REYNOLDS NUMBER)..........13 2.5啟動能力定義.........................14 2.6動量理論與BETZ極限....................15 2.7無因次分析...........................16 2.8垂直軸風力機流場特性...................18 2.9快速傅立葉轉換........................19 第三章 實驗設備..........................21 3.1風洞設備.............................21 3.2垂直軸風力機與發電機...................21 3.3量測設備.............................23 第四章 研究方法與過程.....................26 4.1風洞流場檢測.........................26 4.2紊流場架設...........................26 4.3紊流強度.............................28 4.4紊流積分尺度..........................28 4.5參考風速.............................30 4.6風機性能檢測..........................31 4.7風洞阻塞比影響........................32 4.8功率量測之不確定度分析.................34 4.9風機流場量測..........................35 第五章 結果與討論.........................37 5.1參考風速.............................37 5.2風力機性能檢測.........................38 5.3風機周圍流場量測.......................42 第六章 結論與建議..........................48 6.1.1參考風速............................48 6.1.2風機效率............................48 6.1.3風機周圍流場.........................49 6.2建議.................................51 參考文獻.................................53

    [1]Gore A.L., “An Inconvenient Truth”, 2007.
    [2]“World Wind Energy Report”, WWEA, 2010.
    [3]臺灣風能實驗室, http://www.atm.ncu.edu.tw/93/wind/
    [4]工研院能資所, http://www.itri.org.tw/chi/eel/
    [5]Deglaire P., Engbom S., Agren O., and Bernhoff H., “Analytical Solutions for a Single Blade in Vertical Axis Turbine Motion in Two-Dimensions”, European J. of Mechanics B/Fluids, Volume 28, Issue 4, pp. 506-520, July-August 2009.
    [6]Touryan K. J., Strickland J. H., and Berg D E., “Electric Power from Vertical Axis Wind Turbine”, Journal of Propulsion and Power, Vol. 3, pp. 481-493, Nov.-Dec. 1987.
    [7]Staelens Y., Saeed F., and Paraschivoiu I., “A Straight-Bladed Variable-Pitch VAWT Concept For Improved Power Generation”, 41st Aerospace Sciences Meeting and Exhibit, AIAA-2003-0524, January 2003.
    [8]Bussel G.J.W. van, Mertens S., Polinder H. and Sidler H.F.A., “TURBY: concept and realisation of a small VAWT for the built environment”, EAWE/EWEA Special Topic Conference, The Science of making Torque from Wind, pp. 509-516, April 2004.
    [9]Gorlov A.M., “Development of the Helical Reaction Hydraulic Turbine”, Marine Technology, Vol.35, pp.175-182, 1998.
    [10]Shiono M., Suzuki K. and Kiho S., “Output Characteristics of Darrieus Water Turbine with Helical Blades for Tidal Current Generations”, International Offshore and Polar Engineers Conference, pp. 26-31, 2002.
    [11]Chen-Jim S.J., Chen Z., Biswas S., and Miau J.J., Hsieh C.H., “Torque and Coefficients of a Vertical Axis Wind Turbine with Optimal Pitch Control”, ASME2010-27224, 2010.
    [12]Islam M., Ting D. S.-K., and Fartaj, “Desirable Airfoil Features for Smaller- Capacity Straight-Bladed VAWT”, Wind Engineering Vol. 31, No. 3, pp 165-196, 2007.
    [13]Islam M., Fartaj A., and Carriveau R., “Analysis of the Design Parameters related to a Fixed-pitch Straight-Bladed Vertical Axis Wind Turbine”, Wind Engineering Vol. 32, no. 5, pp 491-507, 2008.
    [14]Islam M., Fartaj A. and Carriveau R., “Analysis of the Design Parameters related to a Fixed-pitch Straight-Bladed Vertical Axis Wind Turbine”, Wind Engineering Vol. 32, no. 5, pp 491-507, 2008.
    [15]Islam M., Ting D. S.-K., and Fartaj, “Design of a Special-purpose Airfoil for Smaller-Capacity Straight-Bladed VAWT”, Wind Engineering Vol. 31, No. 6, pp 401-424, 2007.
    [16]Deviant Ph., Laverne T., Hureau J., “Experimental study of wind-turbine airfoil aerodynamic in high turbulence”, Journal of Wind Engineering and Industrial Aerodynamics, pp689-707, Vol. 90, 2002.
    [17]Darrieus G. J. M., “United States Patent No.1835018”, Dec. 8,1931.
    [18]Blackwell B.F., “The Vertical-Axis Wind Turbine -how it works”, Sinda Lab, 1974.
    [19]Lissaman P. B. S., “Low Reynolds Number Airfoils”, Ann. Rev. Fluid Mech., No. 15, pp. 223-39, 1983.
    [20]Sheldahl R. E., “Comparison of Field and Wind Tunnel Darrieus Wind Turbine Data”, Sandia National Laboratories, SAND80-2469, 1981.
    [21] Homicz G. F., “Numerical Simulation of VAWT Stochastic Aerodynamic Loads Produced by Atmospheric Turbulence VAWT-SAL Code”, Sandia National Laboratories, SAND91-1124, 1991.
    [22]Strickland J. H., “The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes”, SAND75-0431, 1975.
    [23]Worstell M. H., “Aerodynamic Performance of the 17meter Diameter Darrieus Wind Turbine in the Three-bladed Configuration: addendum”, SAND79-1753, 1982.
    [24]Worstell M. H., “Aerodynamic Performance of the 17meter Diameter Darrieus Wind Turbine”, report SAND78-1737, 1978.
    [25]Jesch L. F., and Walton D., “Reynolds number effects on the aerodynamic performance of a vertical axis wind turbine”, International Symposium on Wind Energy Systems, 3rd, Lyngby, Denmark, August 26-29, 1980.
    [26]Atichat J.T., Nagib H.M., and Loehrke R.I., “Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales”, Journal of Fluid Mechanics, Vol.114, pp.501-528, 1982.
    [27]Brochier G., Fraunie P., Beguier C., and Paraschivoiu I., “Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades”, Journal of Propulsion and Power, Vol.2, pp. 445-449., Sept.-Oct. 1986.
    [28]Berg D. E., Klimes P. C., and Stephenson W. A., “Aerodynamic Design and Initial Performance Measurements For the Sandia 34-m Diameter Vertical-Axis Wind Turbine”, Proceedings of the Ninth ASME Wind Energy Symposium, ASME, 1990.
    [29]Masson C., Leclerc C., and Paraschivoiu I., “Performance Predictions of VAWTs With NLF Airfoil Blades, Journal of Solar Energy Engineering”, Vol.119, pp. 97-99, Technical Brief, 1997.
    [30]Gorban A.N., Gorlov A.M., and Silantyev V.M., “Limits of the Turbine Efficiency for Free Fluid Flow”, J. Energy Resour. Technol. ,Vol. 123, Issue 4, pp.311-318, 2001.
    [31]Mertens S., Kuik G. van, and Bussel G. van, “Performance of A High Tip Speed Ratio H-Darrieus In the Skewed Flow On A Roof”, 41st Aerospace Sciences Meeting and Exhibit, AIAA-2003-0523, January 2003.
    [32]Lida A., Kato K., and Mizuno A., “Numerical Simulation of Unsteady Flow and Aerodynamic Performance of Vertical Axis Wind Turbines with LES”, 16th Australasian Fluid Mechanics Conference, 2007.
    [33]Kirke B.K. and Lazauskas L., “Variable pitch Darrieus water turbines”, J. Fluid Science and Tech., Vol. 3, No. 3, pp. 430-438., June 2008.
    [34]Hamada K., Smithb T., Durrani N., Qind N., and Howell R., “Unsteady Flow Simulation and Dynamic Stall around Vertical Axis Wind Turbine Blades”, AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7-10 January 2008.
    [35]Zannetti L., Gallizio F., and Ottino G. M., “Vortex motion in doubly connected domains”, J. Fluid Mech., Vol. 612, pp. 143–152, 2008.
    [36]Ferreira C. S., Scarano F., Bussel G. V., Kuik G. V., “Visualization by PIV of dynamic stall on a vertical wind turbine”, Experiments in Fluids, Vol. 46, No. 1., pp. 97-108., 2009.
    [37]Hwang S., Lee Y. H., and Kim S. J., “Optimization of Cycloidal Water Turbine and the Performance Improvement by Individual Blade Control”, Applied Energy, Vol. 86, Issue 9, 2009.
    [38]“Vertical Axis Wind Turbines: The History of DOE Program”, U.S. Department of. Energy, Sandia National Laboratories, U.S.A., 1998
    [39]McCroskey W. H., “Unsteady Airfoil”, Ann. Rev. Fluid Mech., No. 14, 1982.
    [40]Brochier G., Fraunie P., Beguier C., and Paraschivoiu I., “Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades”, Journal of Propulsion and Power, Vol.2, pp. 445-449., Sept.-Oct. 1986.
    [41]Fujisawa N. and Shibuya S., “Observations of Dynamic Stall on Darrieus Wind Turbine Blades”, Journal of Wind Engineering and Industrial Aerodynamic 89, 2001.
    [42]Kentfield J.A.C., “The Fundamentals of Wind-driven Water Pumpers, Gordon and Breach Science Publishers”, 1996.
    [43]Carr L. W., “Progress in Analysis and Prediction of Dynamic Stall”, J. Aircraft, Vol.25, No.1, pp. 1–25, 1988.
    [44]Tchon Ko-Foa and Paraschivoiu I., “Navier-Stokes Simulation of the Flow Around an Airfoil in Darrieus Motion”, Journal of Fluids Engineering, Vol. 116, pp. 870-876., ASME, 1994.
    [45]Francis M. S. and Keesee J. E., “Airfoil Dynamic stall performance with Large-Amplitude motions”, AIAA Journal, Vol. 23, No.11, 1985.
    [46]高義明, “內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究”,成功大學碩士論文,2005.
    [47]謝承翰,“垂直軸風力機扭力與功率的檢測與模擬”,成功大學碩士論文,2009.
    [48]Patel R. Mukund, “Wind and Solar Power Systems Design, Analysis and Operation”, second edition, CRC, 2005.
    [49]Laws E.M. And Livesey J. L., “Fow Through Screens”, Ann. Rev. Fluid Mech. 10: 247-66, 1978.
    [50]Sheldahl Robert E. and Blackwell B. F., “Wind Tunnel Perfoemance Data for the Darrieus Wind Turbine with NACA0012 Blades”, SAND76-0130, 1977.
    [51]Pope A. and Barlow H., “Low-Speed Wind Tunnel Testing”, John Wiley&Sons, 1999.
    [52]Templin R. J., “Aerodynamic Performance Theory for the NRC VAWT”, National Reaserch Council of Canada, LTR-LA-160, June 1974.
    [53]Kline S.J. and McClintock F. A., “Describing Uncertainties in single-sample experiments”, Mechanical Engineering, vol. 75, pp. 3, 1953.
    [54]Miau J. J., Huang S. W., Tsai Y. D., Hsieh C. H., Chen S. J., Hu C. C., Cheng J. C., and Leu T. S., “Wind-Tunnel Study On Aerodynamic Performance Of Small Vertical-Axis Wind Turbines”, Int. Conf. on Jets, Wakes and Speparated Flows, ICJWSF-2010, 2010.

    下載圖示 校內:2012-08-27公開
    校外:2015-08-27公開
    QR CODE