簡易檢索 / 詳目顯示

研究生: 熊東澧
Hsiung, Tung-Li
論文名稱: 奈米光觸媒降解毒性物質
Degradation of toxic compounds effected by nanosize photocatalysts
指導教授: 王鴻博
Wang, H. Paul
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 256
中文關鍵詞: 光催化可見光催化奈米二氧化鈦奈米鈦管光催化活性基三氯甲烷二氯酚X射線吸收光譜之延伸區微結構X射線近邊緣結構吸收光譜
外文關鍵詞: Photocatalysis, active sites, nanosize TiO2, titanium nanotube, mesoporous TiO2, visible light photocataysts, CHCl3, 2-chlorophenol, XANES, EXAFS, arsenic
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要概念是應用光催化技術於環境毒性物質之降解,此種尊循環境自淨之自然法則,發展新型光催化技術,以環境友善之太陽能源降低環境中人為之污染物,另外也利用同步輻射X-射線吸收光譜分析TiO2光催化活性基,以了解光催化毒性污染物之反應機制。因此本研究之主要目的是合成新穎性奈米光觸媒,並且分析其催化活性基及光催化之反應機制。
    X射線近邊緣結構吸收光譜(XANES)可區分A1、A2及A3三種主要光催化活性基及鍵結結構組成,在不同形態之奈米TiO2光觸媒(奈米TiO2、TiO2奈米管(TNT)、中孔洞TiO2 (meso-TiO2)、TiO2/SBA-15、TiO2-SiO2及Ti-MCM-41),其中,A2似乎是光催化降解有機物(例如:亞甲基藍(MB)、三氯甲烷(CHCl3)及二氯酚(2CP))最主要之光催化活性基。另外即時(in-situ) XANES光譜顯示奈米CuO/TiO2可光催化降解MB或CHCl3,銅可接收電子光催化降解亞甲基藍;銅也可以在光催化降解CHCl3作為電子贈與者。另外,也利用離子溶液合成奈米meso-TiO2可見光觸媒,此種N改質meso-TiO2之可見光催化分解MB活性遠高於傳統奈米TiO2。在光催化氧化三價砷(As(III))及腐質酸-As(III)錯合物之反應機制研究中,發現TNT具選擇性氧化As(III)至As(V)以降低其毒性及擴散性,並且指出光誘發之•O2可能是主要氧化劑。若Cu(II)存在,部分(95%)光激發電子被Cu(II)消粍,As(III)之氧化速率及選擇性也降低。
    本研究主要成果包括:(1)分析奈米TiO2之光催化活性基以作為設計光觸媒之參考;(2)發展小角度X-射線散射光譜(SAXS)分析TiO2奈米管生成機制;(3)發展新型光觸媒降解毒性含氯有機污染物;與(4)了解As(III)氧化生成毒性及擴散性較低之As(V)及其在TiO2奈米管之光催化反應機制。

    The present work includes the studies of photocatalytic degradation of environmental toxic compounds such as trichloromethane, 2-chlorophenol, and arsenic (As(III)) on nanosize TiO2 based photocatalysts. X-ray absorption spectroscopy was used in characterization of valence and local structure (<1 nm) of photoactive species in the photocatalysts. Molecular structure information such as coordination number, bond distance, and oxidation state of elements has been determined by X-ray absorption (near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)) spectroscopy. By XANES, A1, A2 and A3 can be distinguished as four-, five-, and six- coordinated Ti species, respectively on the nano- and subnano-size TiO2 (such as nanosize TiO2, TiO2 nanotube, mesoporous TiO2, TiO2/SBA-15, TiO2-SiO2, and Ti-MCM-41). The A2 sites which are the main photocatalytic species on the nanosize TiO2 for photocatalytic degradation of methylene blue (MB), trichloromethane (CHCl3), and 2-chlorophenol (2CP). Moreover, by in-situ XANES spectroscopy, copper on TiO2 thin film acts as electron acceptor or electron donor during photocatlaytic oxidation of methylene blue and reduction of CHCl3, respectively. Photocatalytic degradation of CHCl3 on the CuO dispersed TiO2 is enhanced, suggesting the electron donation (from the encapsulated TiO2) to CuO enriched on the surface. During photocatalytic degradation of MB, CuO in the CuO/TiO2 thin films was, to some extent, reduced and the bond distance of Cu-O was decreased by 0.03 Å. The visible light photocatalysts (meso N-TiO2) has a remarkable photoreactivity in photocatalytic degradation of methylene blue. The meso N-TiO2 has a conversion of 87% for photocatalytic degradation of mthylene blue under visible light radiation for seven hours. By in-situ XAS spectroscopy, As(III) is oxidized with the photoexcited holes (h+) (As(III) + 2h+ → As(V)) while the not-recombined e- may be scavenged with O2 on the surfaces of the TNT during photocatalysis. The apparent first-order rate constant for the photocatalytic interconversion of As(III) to As(V) is 0.0148 min-1. In the absence of O2, on the contrary, about 28% of As(III) are reduced to As(0). The HA-As(III) complexes can also be photocatalytic oxidation to form less toxic and mobility As(V) on the TNT.

    中文摘要............................................................................................................................. I ABSTRACT...................................................................................................................... III 謝誌..................................................................................................................................... V CONTENT........................................................................................................................ VI LIST OF TABLES.......................................................................................................... VIII LIST OF FIGURES....................................................................................................... XIV CHAPTER 1 INTRODUCTION....................................................................................... 1 CHAPTER 2 LITERATURE SURVEY............................................................................ 5 2.1 Toxic Chlorinated Organic Compounds-Trihalomethans and 2-Chlorophenol..........5 2.2Toxic Inorganic Compound-Arsenic...........................................................................8 2.3 Physical and Chemical properties of photocatalysts…………………..................... 9 2.4 X-ray Absorption Spectroscopy……………………………………...................... 39 CHAPTER 3 EXPERIMENTAL METHODS…………………………………............ 55 3.1 Preparation of catalysts........................................................................................... 55 3.1.1 Preparation of nanosize TiO2......................................................................... 55 3.1.2 Preparation of TiO2-SiO2............................................................................... 55 3.1.3 Preparation of TiO2/SBA-15.......................................................................... 55 3.1.4 Preparation of Ti-MCM-41............................................................................ 56 3.1.5 Preparation of CuO/TiO2 thin film............................................................... . 56 3.1.6 Preparation of TiO2 nanotubes....................................................................... 56 3.1.7 Preparation of nitrogen doped mesoporous TiO2 via ionic liquid.................. 57 3.1.8 Preparation of mesoporous TiO2.................................................................... 57 3.2 Characterization of catalysts................................................................................... 58 3.2.1 X-ray diffraction spectroscopy (XRD)......................................................... 58 3.2.2 Transmission electron microscopy (TEM).................................................... 58 3.2.3 Diffuse reflectance ultraviolet-visible spectroscopy (DR UV-VIS).............. 59 3.2.4 Nitrogen adsorption-desorption isotherm...................................................... 59 3.2.5 X-ray photoelectron spectra (XPS)............................................................... 59 3.2.6 Nuclear magnetic resonance (NMR)............................................................. 59 3.2.7 Raman spectroscopy...................................................................................... 60 3.2.8 X-ray absorption spectroscopy (XAS).......................................................... 60 3.3 Photocatalysis experiment detail...............................................................................61 CHAPTER 4 RESULTS AND DISCUSSION…………………………………..............66 4.1 Photocatalytic active site in nanosize TiO2.......................................................... 66 4.1a Chemical structure of photocactive sites in nanosize TiO2 for photocatalytic degradation of methylene blue…..................................................................... 67 4.1b XANES studies of photocatalytic active species in nanosize TiO2-SiO2........75 4.1c Speciation of active sites during photocatalytic degradation of CHCl3 in nanosize TiO2…………................................................................................... 83 4.1d Photocatalytic degradation of 2-chlorophenol in nanosize, nanotube, and mesoporous TiO2………………………………....................…….....…. 94 4.1e Possible reaction mechanisms for photocatalytic oxidation of 2-chlorophenol in nanosize and mesoporous TiO2.................................................................. 111 4.2 In-situ XANNES studies for photocatalysis...................................................... 114 4.2a In-situ XANES studies of CuO/TiO2 thin films during photocatalytic degradation of CHCl3..................................................................................... 115 4.2b In-situ XANES studies of CuO/TiO2 thin films during photodegradation of methylene blue.......................................................................................... 123 4.3 Visible light photocatalysts................................................................................ 130 4.3 Chemical structure of nitrogen-doped mesoporous TiO2 prepared with ionic liquids........................................................................................................... 131 4.4 Photocatalytic oxidation of As(III) and HA-As(III) 4.4a Photocatalytic oxidation of As(III) effected by titanium nanotubes............. 140 4.4b Photocatalytic oxidation of humic acid-As(III) complexes effected by titanium nanotubes...................................................................................................... 156 CHAPTER 5 CONCLUSIONS...................................................................................... 160 APPENDIXS.................................................................................................................... 162 A1. Speciation of nanosize copper in micro- and meso-porous molecular sieves............ 162 A2. Photocatalytic degradation of spill oils on TiO2 nanotube thin Films........................ 172 A3. Greenhouse gases (CO2) capture by dual-alkaline absorption process from coal fire power plant................................................................................................... 182 A4. SAXS studies of formation mechanism of titanium nanotubes and mesoporous TiO2........................................................................................................ 242 REFERENCES................................................................................................................ 247 CURRICULUM VITAE..................................................................................................253

    Adachi, M., Murata, Y., Harada, M., Yoshikawa, S., 2000. Chem. Lett. 8, 942.
    Arabatzis, I.M., Stergiopoulos, T., Bernard, M.C., Labou, D., Neophytides, S.G., Galaras, P., 2003. Appl. Catal. B 42, 187.
    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Science 293, 269.
    Bai, H.L., Yeh, A.C., 1997. Ind. Eng. Chem. Res. 36, 2490.
    Bai, Y., Li, W., Liu, C., Yang, Z.H., Feng, X., Lu, X.H., Chan, K.Y., 2009. J. Mater. Chem. 19, 7055.
    Bang, S., Patel, M., Lippincott, L., Meng, X., 2005. Chemosphere 60, 389.
    Bazin, D., Sayers, D., 1997. J. Phys. Chem. 101, 5332.
    Beck, C., Mallat, T., Bürgi, T., Baiker, A., 2001. J. Catal. 204, 428.
    Bernholc, J., 2003. Nature 424, 246.
    Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.A., 2001. J. Chem. Technol. Biotechnol. 77, 102.
    Bissen, M., Vieillard-Baron, M.-M., Schindelin, A.J., Frimmel, F.H., 2001. Chemosphere 44, 751.
    Blatchley, E.R., Margetas, D., Duggiraly, R., 2003. Water Res. 37, 4385.
    Boorman, G.A., Dellarco, V., Dunnick, J.K., Ghpain, R.E., Hunter, S., Hauchman, F., Gardner, H., Cox, M., Sills, R.C., 1999. Enviorn. Health Persp. 107, 207.
    Borm, P.J.A., 2002. Inhal. Toxicol. 14, 311.
    Brus, L.E., 1983. J. Chem. Phys. 79, 5566.
    Brus, L.E., 1984. J. Chem. Phys. 80, 4403.
    Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L., 2003. Nano Lett. 3, 1049.
    Byrne, M.T., McCarthy, J.E., Bent, M., Blake, R., Gunko, Y.K., Horvath, E., Konya, Z., Kukovecz, A., Kiricsi, I., 2007. J. Mater. Chem. 17, 2351.
    Chang-Chien, C.-Y., Hsu, C.-H., Lee, T.-Y., Liu, C.-W., Wu, S.-H., Lin, H.-P., Tang, C.-Y., Lin, C.-Y., 2007. Eur. J. Inorg. Chem., 3798.
    Chen, P.H., Jenq, C.H., 1998. Environ. Int. 24, 871.
    Chen, Q., Du, G.H., Zhang, S., Peng, L.M., 2002. Acta Crystallographica Section B B58, 587.
    Chien, Y.C., Wang, H.P., 2005. J. Electron Spect. and Related Pheno. 144, 315.
    Corlett, G., 2000. Solid State Technol., 201.
    D'Oliveira, J.-C., Al-Sayyed, G., Pichat, P., 1990. Eniron. Sci. Technol. 24, 990.
    Dejongh, P.E., Vanmaekelbergh, D., Kelly, J., 1999. Chem. Commun., 1069.
    Diao, Y.F., Zheng, X.Y., He, B.S., Chen, C.H., Xu, X.C., 2004. Energ. Convers. Manage. 45, 2283.
    Doerffer, J.W., 1992. Pergramon Press Oxford, 133.
    Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L.-M., 2001. Appl. Phys. Lett. 79, 3702.
    Duong, H.A., Berg, M., Hoang, M.H., Pham, H.V., Gallard, H., Giger, W., Gunten, U.V., 2003. Water Res. 37, 3242.
    Dutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., 2005. Eniron. Sci. Technol. 39, 1827.
    Earle, M.J., Seddon, K.R., 2000. Pure Appl. Chem. 72, 1391.
    Economidis, N., Coil, R.F., Smimiotis, P.G., 1998. Catal. Today 40, 27.
    Entezari, M.H., Mostafai, M., Sarafraz-yazdi, A., 2006. Ultrason. Sonochem. 13, 37.
    EPA, U., 1980. US EPA EPA-440-5-80-034, 1-63.
    Espigares, M., Lardelli, P., Ortega, P., 2003. J. Environ. Health, 9.
    ETC, 2003. ETC Communiqué 14, 1-3.
    ETC, g., 2002. ETC Communiqué 76, 1-8.
    Farges, F., Brown, G.E., Rehr, J.J., 1997. Phys. Rev. B 56, 1809.
    Feldman, Y., Wasserman, E., Srolovitz, D.A., 1995. Science 267, 222.
    Ferguson, M.A., Hering, J.G., 2006. Eniron. Sci. Technol. 40 4261.
    Ferguson, M.A., Hoffmann, M.R., Hering, J.G., 2005. Eniron. Sci. Technol. 29, 1880.
    Fu, X., Clark, L.A., Yang, Q., Anderson, M.A., 1996. Eniron. Sci. Technol. 30, 647.
    Gianotti, E., Berlier, G., Costabello, K., Coluccia, S., Meneau, F., 2007. Catal. Today 126, 203.
    Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X., 2004. J. Phys. Chem. B 108, 1230.
    Groothaert, M.H., Bokhoven, J.A.V., Battiston, A.A., Meckhuysen, B.M., J. Am. Chem. Soc. 125, 7629.
    Gunawidjaja, P.N., Holland, M.A., Mountjoy, G., Pickup, D.M., Newport, R.J., Smith, M.E., 2003. Solid State Nucl. Magn. Reson. 23, 88.
    Gupta, V.K., Ali, I., Saini, V.K., 2004. Eniron. Sci. Technol. 38, 4012.
    Hanley, T.L., Luca, V., Pickering, I., Howe, R.F., 2002. J. Phys. Chem. B 106, 1153.
    Hara, M., Kondo, T., Komoda, M., Ikeda, S., Shinohara, K., Tanaka, A., Kondo, J.N., Domen, K., 1998. Chem. Commun., 357.
    Heredia, J.B.D., Torregrosa, J., Dominguez, J.R., Peres, J.A., 2001. J. Hazard. Mater. B83, 255.
    Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., 1995. Chem. Rev. 95, 69.
    Houlding, V.H., Grätzel, M., 1983. J. Am. Chem. Soc. 105, 5695.
    Hsiao, C.Y., Lee, C.L., Ollis, D.F., 1983. J. Catal. 82, 418.
    Hsiao, M.C., Wang, H.P., 2001. Environ. Sci. Technol. 35, 2532.
    Hsiung, T.-L., Wang, H.P., Lu, Y.-M., Hsiao, M.C., 2006a. Radiat. Phys. and Chem. 75, 2054.
    Hsiung, T.L., Wang, H.P., Wang, H.C., 2006b. Radiat. Phys. Chem. 75, 2042.
    Hsu, Y.-Y., Hsiung, T.-L., Wang, H.P., Fukushima, Y., Wei, Y.-L., Chang, J.-E., 2008. Mar. Pollut. Bull. 57, 873.
    Huang, C.-H., Wang, H.P., Huang, H.-L., Hsiung, T.-L., Tang, F.-C., 2007a. J. Electron Spect. Related Pheno. 156-158, 217.
    Huang, C., Liu, X., Kong, L., Lan, W., Su, Q., Wang, Y., 2007b. Applied Physics A 87, 781.
    Huang, H.J., Wang, H.P., Lee, J.F., 2003. Appl. Catal. B 40, 111.
    Huang, H.L., Wang, H.P., 2005. J. Electron Spect. and Related Pheno. 144, 307.
    Huang, J.F., Chen, P.Y., Sun, I.W., Wang, S.P., 2001. Inorg. Chim. Acta 320, 7.
    Iijima, S., 1991. Nature 356, 56.
    Imai, H., Takei, Y., Shimizu, K., Matsuda, M., Hirashima, H., 1999. Mater. Chem. 9, 2971.
    Iwasawa, Y., 1995. World Scientific.
    Jain, A.K., Gupta, V.K., Jain, S., Suhas, 2004. Environ. Sci. Technol. 38, 1195.
    Ji, G.B., Su, H.L., Tang, S.L., Du, Y.W., Xu, B.L., 2005. Chem. Lett. 34, 86.
    Ji, Q., Shimizu, T., 2005. Chem. Commun., 4411.
    Jongh, P.E.d., Vanmaekelbergh, D., Kelly, J., 1999. Chem. Commun., 1069.
    Kalyani, S., Rao, P.S., Krishnaiah, A., 2004. Chemosphere 57, 1225.
    Kang, M., Lee, J.H., Lee, S.H., Chung, C.H., Yoon, K.J., Ogino, K., Miyata, S., Choung, S.J., 2003. J. Mol. Catal. A-Chem. 193, 273.
    Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, S., 1999. Avd. Mater. 11, 1307.
    Kau, L.S., Spira-Solomon, D.J., Penner-Hahu, J.E., Hodgson, K.O., Solomon, E.I., 1987. J. Am. Chem. Soc. 109, 6433.
    Khan, S.U.M., Mofareh, A.S., Ingler, W.B., 2002. Science 297, 2243.
    Kidak, R., Ince, N.H., 2006. Ultrason. Sonochem. 13, 195.
    Kincaid, B.M., Eisenberger, P., 1975. Phys. Rev. Lett. 34, 1361.
    Kontos, A.I., Arabatzis, I.M., Tsoukleris, D.S., Kontos., A.G., Bernard, M.C., Petrakis, D.E., Falaras, P., 2005. Catal. Today 101, 275.
    Kronig, R.D., 1932. Z. Phys. 75, 468.
    Kukovecz, Á., Hodos, M., Horváth, E., Radnóczi, G., Kónya, Z., Kiricsi, I., 2005. J. PHys. Chem. B 109, 17781.
    Kuroda, Y., Mori, T., Yagi, K., Makihata, N., Kawahara, Y., Nagao, M., Kittaka, S., 2005. Langmuir 21, 8026.
    Lee, H., Choi, W., 2002. Environ. Sci. Technol. 36, 3872.
    Li, L.P., Liu, J.J., Su, Y.G., Li, G.S., Chen, X.B., Qiu, X.Q., Yan, T.J., Nanotechnology 20, 9.
    Li, X., Cubbage, J.W., Tetzlaff, T.A., Jenks, W.S., 1999. J. Org. Chem. 64, 8509.
    Li, X.Z., Sun, J.M., 2001. Int. J. Hyg. Envir. Heal. 11, 343.
    Lin, K.-S., Wang, H.P., 2000a. Langmuir 16, 2627.
    Lin, K.-S., Wang, H.P., 2000b. Environ. Sci. Technol. 34, 4849.
    Lin, K.-S., Wang, H.P., 2001. J. Phys. Chem. B 105, 4956.
    Lin, T.F., Hoang, S.W., 2000. Sci. Total Environ. 256, 41.
    Linsebigler, A.L., Lu, G., Yates, J.T., 1995. Chem. Rev. 95, 735.
    Lita, S.R., 2000. Solid State Technol., 67.
    Liu, C.J., Yang, T.Y., Wang, C.H., Chien, C.C., Chen, S.T., Wang, C.L., Leng, W.H., Hwu, Y., Lin, H.M., Lee, Y.C., Cheng, C.L., Je, J.H., Margaritondo, G., 2009a. Mater. Chem. Phys. 117, 74.
    Liu, D.G., Chang, C.H., Liu, C.Y., Chang, S.H., Juang, J.M., Song, Y.F., Yu, K.L., Liao, K.F., Hwang, C.S., Fung, H.S., Tseng, P.C., Huang, C.Y., Huang, L.J., Chung, S.C., Tang, M.T., Tsang, K.L., Huang, Y.S., Kuan, C.K., Liu, Y.C., Liang, K.S., Jeng, U.S., 2009b. J. Synchrotron Radiat. 16, 97.
    Liu, S.H., Wang, H.P., 2002. Int. J. Hydrogen. Energ. 2002, 859.
    Liu, S.H., Wang, H.P., Huang, Y.J., Sun, Y.M., Lin, K.S., Hsiao, M.C., Chen, Y.S., 2003. Energy Sources 25, 591.
    Luca, V., Djajanti, S., Howe, R.F., 1998. Structure and electronic properties of sol-gel titanium oxides studied by X-ray absorption spectroscopy. J. Phys. Chem. B 102, 10650.
    Makinen, P.M., Theno, T.J., Ferguson, J.F., Ongerth, J.E., Puhakka, J.A., 1993. Environ. Sci. Technol. 27, 1434.
    Melissa, B., Sander, S., Côté, M.J., Gu, W., Kile, B.M., Tripp, C.P., 2004. Adv. Mater. 16, 2052.
    Meng, F.M., Sun, Z.Q., 2009. Mater. Chem. Phys. 118, 349.
    Mikhaylov, R.V., Lisachenko, A.A., Shelimov, B.N., Kazansky, V.B., Martra, G., Alberto, G., Coluccia, S., 2009. J. Phys. Chem. C 113, 20381.
    Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, G.A., 2005. Nano Lett. 5, 191.
    Mor, G.K., Varghese, O.K., Paulose, M., Shankar, M., Grimes, C.A., 2006. Sol. Energy Mater. Sol. Cells 90, 2011.
    Nagaveni, K., Sivalinagam, G., Hegde, M.S., Madras, G., 2004. Environ. Sci. Technol. 28, 1600.
    Nakajima, T., Xu, Y.-H., Mori, Y., Kishita, M., Takanashi, H., Maeda, S., Ohki, A., 2005. J. Hazard. Mater. 120, 75.
    Neylon, M.K., Marshall, C.L., Kropf, A.J., 2002. J. Am. Chem. Soc. 124, 5457.
    Ohkuma, Y., Kawanishi, S., 2001. Arch. Biochem. Biophys. 389, 49.
    Palomino, G.T., Fisicaro, P., Giamello, E., Bordiga, S., Lamberti, C., Zecchina, A., 2000. J. Phys. Chem. B 104, 4064.
    Peiró, A.M., Aylló, J.A., Peral, J., Doménech, X., 2001. Appl. Catal. B 30, 359.
    Pena, M., Meng, X., Korfiatis, G.P., Jing, C., 2006. Environ. Sci. Technol. 40, 1257.
    Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L., Merg, X., 2005. Water Res. 39, 2327.
    Plummer, J.D., Edzwald, J.K., 2001. Environ. Sci. Technol. 35, 3661.
    Pore, V., Heikkilä, M., Ritala, M., Leskelä, M., Areva, S., 2006. J. Photoch. Photobio. A 177, 68.
    Poumellec, B., Durham, P.J., Guo, G.Y., 1991. J. Phys.: Conden. Matter. 3, 8195.
    Qian, L., Du, Z.L., Yang, S.Y., Jin, Z.S., 2005. J. Mol. Struct. 749, 103-107.
    Quan, X., Yang, S., Ruan, X., Zhao, H., 2005. Environ. Sci. Technol. 39, 3770.
    Reddy, E.P., Davydov, L., Smirniotis, P.G., 2002. J. Phys. Chem. B 106, 3394.
    Reltier, R., 2008. Power 152, 38.
    Robert, F., 2000. Science 290, 1526.
    Rook, J.J., 1974. J. Treat Examin. 23, 234.
    Ryu, J., Choi, W., 2004. Environ. Sci. Technol. 38, 2928.
    Ryu, J., Choi, W., 2006. Environ. Sci. Technol. 40, 7034.
    Sayers, D.E., Stern, E.A., Lytle, F.W., 1971. Phys. Rev. Lett. 27, 1204.
    Schiavello, M., 1997. Wiley, New York.
    Sene, J.J., Zeltner, W.A., Anderson, M.A., 2003. J. Phys. Chem. B 107, 1597.
    Serpone, N., 1995. Sol. Energy Mater. Sol. Cells 38, 369.
    Serpone, N., Pelizzetti, E., 1989. Wiley, New York.
    Serpone, N., Terzian, R., 1994. J. Phys. Chem. 98, 2634.
    Shang, N.-C., Yu, Y.-H., Ma, H.-W., Chang, C.-H., Liou, M.-L., 2006. J. Environ. Manage. 78, 216.
    Shi, Z., Sigman, M.E., Ghosh, M.M., Dabestani, R., 1997. Environ. Sci. Technol. 31, 3581.
    Singh, S., Asad, S.F., Ahmad, A., Khan, N.U., Hadi, S.M., 2001. Cancer Lett. 169, 139.
    Spurr, R.A., Myers, H., 1957. Anal. Chem. 29, 760.
    Stern, E.A., Newville, M., Ravel, B., Yacoby, T., Haskel, D., 1995. Physica B 209, 117.
    Sunada, K., Watanabe, T., Hashimoto, K., 2003. Environ. Sci. Technol. 27, 4785-4789.
    Tenne, R., Margulis, L., Genut, M., Hodes, G., 1992. Nature 360, 444.
    Tian, Z.R., Voigt, J.A., Liu, J., Mckenxie, B., Xu, H., 2003. J. Am. Chem. Soc. 125, 12384.
    Tsai, C.K., Wang, H.P., Kang, H.Y., Huang, C.H., 2010. Carbon, to be submitted.
    Tseng, I.H., Chang, W.C., Wu, J.C.S., 2002. Appl. Catal. B 37, 37..
    Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Grimes, C.A., 2003. Sen. Actuators. B Chem. 93, 228.
    Vijayan, P., Mahendiran, C., Suresh, C., Shanthi, K., 2009. Catal. Today 141, 220.
    Waller, K., Swan, S.H., Delorenze, G., Hopkins, B., 1998. Epidemiology 9, 134.
    Wang, H.-C., Wang, H.P., Peng, C.-Y., Liu, H.-L., Huang, H.-L., 2003. Bull. Environ. Contam. Toxicol. 71, 798.
    Wang, Y.Q., Hu, G.Q., Duan, X.F., Sun, H.L., Zue, Q.K., 2002. Chem. Phys. Lett. 365, 427.
    Wang, Z., Fingas, M., Page, D.S., 1999. J. Chrometogr. A 843, 369.
    Warren, C.J., Dudas, M.J., 1988. Sci. Total Environ. 76, 229.
    Welton, T., 1999. Chem. Rev. 99, 2071.
    West, A.R., 1999. Wiley, New York.
    Willemin, J.A., Nesbitt, C.C., Dewey, G.R., Sandell, J.F., Sutter, L.L., 1995. J. Air Waste Manag. Assoc. 45, 871.
    Wilmer, H., Kurtz, M., Klementiev, K.V., Tkachenko, O.P., Grünert, W., Hinrichsen, O., Birkner, A., Rabe, S., Merz, K., Driess, M., Wöll, C., Muhler, M., 2003. Phys. Chem. Chem. Phys. 5, 4736.
    Wu, Z.Y., Ouvrard, G., Gressier, P., Natoli, C.R., 1997. Phys. Rev. B 55, 10382.
    Xia, K., Bleam, W., Helmke, P.A., 1997. Geochim. Cosmochim. Ac. 61, 2223.
    Xiaodan, Y., Qingyin, W., Shicheng, J., Yihang, G., 2006. Mater. Charact. 57, 333.
    Xu, T., Kamat, P.V., O'Shea, K.E., 2005. J. Phys. Chem. A 109, 9070.
    Yang, G.C.C., Yang, T.Y., 2004. J. Merbr. Sci. 233, 151.
    Yang, G.C.C., Yang, T.Y., Tsai, S.H., 2002. Water Sci. Technol. 46, 171.
    Yang, G.C.C., Yang, T.Y., Tsai, S.H., 2003. Water Res. 37, 785.
    Yang, H., Lin, W.-Y., Rajeshwar, K., 1999. J. Photoch. Photobio. A 123, 137.
    Yao, B.D., Chen, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y., Wang, N., 2003. Appl. Phys. Lett. 82, 281.
    Yeh, A.C., Bai, H.L., 1999. Sci. Total Environ. 228, 121.
    Yeh, J.T., Resnik, K.P., Rygle, K., Pennline, H.W., 2005. Fuel Process. Technol. 86, 1533.
    Yoo, K.S., Choi, H., Dionysiou, D.D., 2004. Chem. Commun., 2000.
    Yoo, K.S., Choi, H., Dionysiou, D.D., 2005a. Catal. Commun. 6, 259.
    Yoo, K.S., Lee, T.G., Kim, J., 2005b. Micropor. Mesopor. Mat. 84, 211.
    Yoon, J., Choi, Y., Cho, S., Lee, D., 2003. Sci. Total Environ. 302, 157.
    Yoon, S.-H., Lee, J.H., 2005. Environ. Sci. Technol. 39, 9695.
    Yoshida, H., Matsushita, N., Kato, Y., Hattori, T., 2003. J. Phys. Chem. B 107, 8355.
    Zhou, Y., Antonietti, M., 2003. J. Am. Chem. Soc. 125, 14960.
    Zou, Z., Ye, J., Arakawa, H., 2003. Int. J. Hydrogen. Energ. 28, 663.
    Zou, Z., Ye, J., Sayama, K., Arakawa, H., 2001. Nature 414, 625.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE