簡易檢索 / 詳目顯示

研究生: 許芊卉
Syu, Cian-Huei
論文名稱: pUNG2-PIT24質體的特性研究:蛞形橙黃壺菌中的新型外染色體轉殖工具
Characterization of the pUNG2-PIT24 Plasmid: A Novel Extrachromosomal Transformation Tool for Aurantiochytrium limacinum
指導教授: 陳逸民
Chen, Yi-Min
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: Aurantiochytrium limacinumshuttle vector外染色體質體centromere-like序列
外文關鍵詞: Aurantiochytrium limacinum, shuttle vector, extrachromosomal plasmid, centromere-like sequences
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一種適用於蛞形橙黃壺菌(Aurantiochytrium limacinum)的外染色體自主複製質體系統 pUNG2-PIT24,並對其進行特性驗證。研究重點是建立一種非整合型、穩定且具自我剔除潛力的質體系統,以克服現有轉殖技術在穩定性與效率上的限制。pUNG2-PIT24 質體引入了來三角褐指藻 (Phaeodactylum tricornutum)的 centromere-like 序列,以支持質體的外染色體維持,從而實現穩定的基因表達。
    研究結果顯示,pUNG2-PIT24 在蛞形橙黃壺菌 BL10 品系中能夠穩定維持外染色體形式,並在去除篩選壓力後展現出自我剔除潛力,分裂效率約97.7 %。此外,該質體具有支持雙重 expression cassette 的潛力。通過電穿孔條件優化和 G418 篩選濃度的調整,成功提高了轉殖效率。本研究開發的質體系統為橙黃壺菌提供了一種穩定的基因操作平台,對於未來的功能性基因驗證、基因編輯以及代謝工程應用具有重要的技術價值。

    This study aims to develop a plasmid system, pUNG2-PIT24, for extrachromosomal replication in Aurantiochytrium limacinum and to validate its characteristics. The focus of the research is to establish a non-integrative, stable, and self-eliminating plasmid system to address the challenges of stability and efficiency in existing transformation technologies. The pUNG2-PIT24 plasmid incorporates centromere-like sequences from Phaeodactylum tricornutum to support extrachromosomal maintenance, enabling stable gene expression and gene editing. The results show that pUNG2-PIT24 can stably maintain an extrachromosomal form in Aurantiochytrium limacinum BL10 and exhibits self-elimination potential upon removal of selective pressure, with a segregation efficiency of approximately 97.7 %. Additionally, the plasmid has the potential to support dual expression cassettes. By optimizing electroporation conditions and adjusting G418 selection concentrations, the transformation efficiency was successfully improved, and high-efficiency plasmid screening was achieved. The plasmid system developed in this study provides a stable genetic manipulation platform for Aurantiochytrium and holds significant technological value for future functional gene validation, gene editing, and metabolic engineering applications.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 附表目錄 XII 附圖目錄 XIII 縮寫表 XIV 一、研究背景 1 1-1 外染色體自主複製載體定義、應用與發展現況 1 1-2 橙黃壺菌專屬外染色體自主複製載體系統的發展史與現況 3 1-3 研究目的及策略 6 二、材料方法 8 2-1 實驗儀器與材料 8 2-2 優化 pUNG2-PIT24 之電穿孔轉殖條件與 G418 篩選濃度 10 2-2-1 BL10 的凍存及活化 10 2-2-2 藉由電穿孔獲得 BL10 轉殖株 11 2-2-3 電穿孔後的 G418 盤濃度測試 12 2-2-4 藉由 colony PCR 篩選含完整質體的BL10轉殖株 12 2-3 pUNG2-PIT24 為自主複製質體之功能驗證 13 2-3-1 pUNG2-PIT24 質體轉殖株之建立 13 2-3-2 穩定性維持分析 stability maintenance assay 13 2-3-3 回收質體分析 rescue assay 14 2-4 BL10 centromere-like 序列對轉殖效率以及質體穩定性的影響分析 15 2-4-1 構築pUNG2-BL10#228 質體 15 2-4-2 pUNG2-BL10#228 質體的 E. coli 轉殖與質體提取 15 2-4-3 pUNG2-BL10#228 質體轉殖株之建立 16 2-5 攜帶雙 expression cassette 質體之外染色體功能評估 16 2-5-1 構築 pUNG2-UEG2-PIT24 16 2-5-3 pUNG2-UEG2-PIT24 質體轉殖株之建立 17 三、結果 18 3-1 優化 pUNG2-PIT24 之電穿孔轉殖條件與 G418 篩選濃度 18 3-1-1 電穿孔電壓優化測試 18 3-1-2 越高的G418篩選濃度越有高機率獲得完整質體轉殖株 18 3-2 pUNG2-PIT24 為自主複製質體之功能驗證 19 3-2-1 Stability maintenance assay的結果 19 3-2-2 Rescue assay的結果 19 3-3 BL10 centromere-like序列對質體穩定性的影響分析 20 3-3-1 pUNG2-BL10#228 的轉殖效率 20 3-3-2 pUNG2-BL10#228 轉殖株無法獲得完整質體 20 3-4 獲得具完整的雙 expression cassette 質體的轉殖株 20 四、討論 21 參考文獻 28 圖表 31 附錄 40

    梁又方,建立可靠的方案以達成橙黃壺菌品系BL10之穩定基因轉殖,國立成功大學生物科技研究所碩士論文,2018。
    張宜婷,橙黃壺菌BL10基因轉殖平台的改良,國立成功大學生物科技研究所碩士論文,2021。
    黃大祐,以UV致變及基因編輯法提高橙黃壺菌 BL10 的DHA產量,國立成功大學生物科技研究所碩士論文,2023。
    Diner, R.E., Bielinski, V.A., Dupont, C.L., Allen, A.E., and Weyman, P.D. Refinement of the Diatom Episome Maintenance Sequence and Improvement of Conjugation-Based DNA Delivery Methods. Front Bioeng Biotechnol 4, 65, 2016.
    Diner, R.E., Noddings, C.M., Lian, N.C., Kang, A.K., McQuaid, J.B., Jablanovic, J., Espinoza, J.L., Nguyen, N.A., Anzelmatti, M.A., Jansson, J., Bielinski, V.A., Karas, B.J., Dupont, C.L., Allen, A.E., and Weyman, P.D. Diatom centromeres suggest a mechanism for nuclear DNA acquisition. Proceedings of the National Academy of Sciences 114, E6015-E6024, 2017.
    Ehrhardt, A., Haase, R., Schepers, A., Deutsch, M.J., Lipps, H.J., and Baiker, A. Episomal vectors for gene therapy. Current Gene Therapy 8, 147-161, 2008.
    Gerbaud, C., and Guérineau, M. 2 μm plasmid copy number in different yeast strains and repartition of endogenous and 2 μm chimeric plasmids in transformed strains. Current Genetics 1, 219-228, 1980.
    Gnügge, R., and Rudolf, F. Saccharomyces cerevisiae Shuttle vectors. Yeast 34, 205-221, 2017.
    Iwanaga, S., Khan, S.M., Kaneko, I., Christodoulou, Z., Newbold, C., Yuda, M., Janse, C.J., and Waters, A.P. Functional Identification of the <em>Plasmodium</em> Centromere and Generation of a <em>Plasmodium</em> Artificial Chromosome. Cell Host & Microbe 7, 245-255, 2010.
    Karas, B.J., Diner, R.E., Lefebvre, S.C., McQuaid, J., Phillips, A.P.R., Noddings, C.M., Brunson, J.K., Valas, R.E., Deerinck, T.J., Jablanovic, J., Gillard, J.T.F., Beeri, K., Ellisman, M.H., Glass, J.I., Hutchison Iii, C.A., Smith, H.O., Venter, J.C., Allen, A.E., Dupont, C.L., and Weyman, P.D. Designer diatom episomes delivered by bacterial conjugation. Nature Communications 6, 6925, 2015.
    Ludwig, D.L., and Bruschi, C.V. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector. Plasmid 25, 81-95, 1991.
    Muñoz, C.F., de Jaeger, L., Sturme, M.H.J., Lip, K.Y.F., Olijslager, J.W.J., Springer, J., Wolbert, E.J.H., Martens, D.E., Eggink, G., Weusthuis, R.A., and Wijffels, R.H. Improved DNA/protein delivery in microalgae – A simple and reliable method for the prediction of optimal electroporation settings. Algal Research 33, 448-455, 2018.
    Murén, E., Nilsson, A., Ulfstedt, M., Johansson, M., and Ronne, H. Rescue and characterization of episomally replicating DNA from the moss Physcomitrella. Proceedings of the National Academy of Sciences 106, 19444-19449, 2009.
    Poliner, E., Takeuchi, T., Du, Z.Y., Benning, C., and Farré, E.M. Nontransgenic Marker-Free Gene Disruption by an Episomal CRISPR System in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779. ACS Synth Biol 7, 962-968, 2018.
    Raghukumar, S. Thraustochytrid Marine Protists: Production of PUFAs and Other Emerging Technologies. Marine Biotechnology 10, 631-640, 2008.
    Renta, P.P., Syu, C.H., Huang, T.Y., Chang, Y.T., Liang, Y.F., Chen, S.T., Weng, P.W., Hsu, M.C., Lin, K.H., Liu, T., Jang, A.C., Tsao, C.C., Lin, H.J., Lin, H.Y., and Chen, Y.M. Novel centromeric plasmid for stable extrachromosomal gene expression in Aurantiochytrium limacinum. Applied Microbiology and Biotechnology 109, 160, 2025.
    Robzyk, K., and Kassir, Y. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Research 20, 3790, 1992.
    Roy, B., and Sanyal, K. Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. Eukaryot Cell 10, 1384-1395, 2011.
    Sakaguchi, K., Matsuda, T., Kobayashi, T., Ohara, J., Hamaguchi, R., Abe, E., Nagano, N., Hayashi, M., Ueda, M., Honda, D., Okita, Y., Taoka, Y., Sugimoto, S., Okino, N., and Ito, M. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Applied and Environmental Microbiology 78, 3193-3202, 2012.
    Sankaranarayanan, S.R., Ianiri, G., Coelho, M.A., Reza, M.H., Thimmappa, B.C., Ganguly, P., Vadnala, R.N., Sun, S., Siddharthan, R., Tellgren-Roth, C., Dawson, T.L.J., Heitman, J., and Sanyal, K. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 9, e53944, 2020.
    Sun, H., Chen, H., Zang, X., Hou, P., Zhou, B., Liu, Y., Wu, F., Cao, X., and Zhang, X. Application of the Cre/loxP Site-Specific Recombination System for Gene Transformation in Aurantiochytrium limacinum. Molecules 20, 10110-10121, 2015.
    Van Craenenbroeck, K., Vanhoenacker, P., and Haegeman, G. Episomal vectors for gene expression in mammalian cells. European Journal of Biochemistry 267, 5665-5678, 2000.
    Velmurugan, S., Ahn, Y.T., Yang, X.M., Wu, X.L., and Jayaram, M. The 2 micrometer plasmid stability system: analyses of the interactions among plasmid- and host-encoded components. Molecular and Cellular Biology 18, 7466-7477, 1998.
    Vernis, L., Poljak, L., Chasles, M., Uchida, K., Casarégola, S., Käs, E., Matsuoka, M., Gaillardin, C., and Fournier, P. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. Journal of Molecular Biology 305, 203-217, 2001.
    Xie, Y., Wang, D., Lan, F., Wei, G., Ni, T., Chai, R., Liu, D., Hu, S., Li, M., Li, D., Wang, H., and Wang, Y. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Scientific Reports 7, 2320, 2017.
    Yang, H.-L., Lu, C.-K., Chen, S.-F., Chen, Y.-M., and Chen, Y.-M. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine biotechnology 12, 173-185, 2010.

    無法下載圖示 校內:2030-08-22公開
    校外:2030-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE