簡易檢索 / 詳目顯示

研究生: 蕭義龍
Hsiao, Yi-Long
論文名稱: 使用PDE方法評價雙重障礙選擇權
Pricing Double Barrier Options Using PDE Approaches
指導教授: 王明隆
Wang, Ming-Long Andrew
學位類別: 博士
Doctor
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 77
中文關鍵詞: hybrid methodBlack-Scholes 公式障礙選擇權有限差分法邊界元素法拉普拉斯轉換
外文關鍵詞: hybrid method, Laplace transform, finite difference method, Black-Scholes equation, barrier options, boundary element method
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文包含兩大研究主題,第一部份是單資產雙障礙選擇權評價,第二部份是雙資產雙障礙選擇權評價。由於評價障礙選擇權是Black-Scholes偏微分方程式(partial differential equation,PDE)的邊界值問題,本研究採用最有效的PDE方法來探討雙障礙選擇權評價問題。

    因Black-Scholes PDE可經由一系列變數轉換成線性齊次熱傳導方程式(linear homogeneous heat equation),故使用解決線性熱傳導方程式最有效的邊界元素法(boundary element method,BEM)來處理單資產障礙選擇權評價問題。再者,由於評價雙資產障礙選擇權為2-D邊界值問題,計算較為複雜,故引用Chen and Chen(1988a,b)提出之hybrid method,可有效降低評價維度,提昇計算效率。其後,我們舉一些數值例來探討評價方法的效率與準確性,並與其他評價方法做比較。數值結果顯示我們的方法可穩定且精確的處理障礙選擇權評價問題。

    This thesis has two main parts. The first focus on the valuation of one-asset double barrier options, and the other discusses the pricing of two-asset double barrier options. Since the valuation of barrier options is a boundary value problem of the Black-Scholes partial differential equation (PDE), we use efficient PDE approaches to price double barrier options in this thesis.

    The Black-Scholes PDE can be transformed to a linear homogeneous heat equation via a set of variable transformations. A boundary element method (BEM) can be used to solve the boundary value problem of the heat equation powerfully in one-dimensional case. Moreover, since the valuation of two-asset double barrier options is a 2-D boundary value problem of PDE, it is difficult to solve the problem using traditional methods. The usage of the hybrid method provided by Chen and Chen (1988a,b) can reduce the dimensions of the valuation problem to enhance the efficiency of calculation. Then we give some numerical examples to demonstrate the flexibility and accuracy of our methods and to compare with other pricing approaches. The numerical results reveal that our methods are useful to price double barrier options stably and precisely.

    1 Thesis Introduction 1 2 Pricing One-Asset Double Barrier Options 4 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . 4 2.2 Introduction . . . . . . . . . . . . . . . . . . . 5 2.3 One-Asset Double Moving Barrier Options . .. . . . 8 2.4 Methodology . . . . . . . . . . . . . . . . . . . 10 2.4.1 The PDE, Initial and Boundary Conditions . .. . 10 2.4.2 The Integral Representation . . . . . . . . . . 13 2.4.3 The Boundary Integral Equations . . . . . . . . 17 2.4.4 The Boundary Element Method . . . . . . . . . . 20 2.5 Accuracy for the Boundary Element Method . . . . 28 2.6 Numerical Examples . . . . . . . . . .. . . . . . 35 2.7 Conclusions . . . . . . . . . . . . . . . . . . . 41 3 Pricing Two-Asset Double Barrier Options 42 3.1 Abstract . . . . . . . . . . . . . . . . . . . . 42 3.2 Introduction . . . . . . . . . . . . . . . . . . 43 3.3 Two-Asset Double Barrier Options . . . . . . . . 47 3.4 Methodology . . . . . . . . . . . . . . . . . . . 49 3.4.1 The PDE, Initial and Boundary Conditions .. . . 49 3.4.2 The Hybrid Method . . . . . . . . . . . . . . . 52 3.5 Accuracy for the Hybrid Method . . . . . . . . . 60 3.6 Numerical Examples . . . . . . . . . . . .. . . . 63 3.7 Conclusions . . . . . . . . . . . . . . . . . . . 70 4 Conclusions and Discussions 72 References 74

    Armstrong, G. F., 2001. Valuation formulae for window barrier options. Applied Mathematical Finance 8, 197–208.
    Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654.
    Boyle, P. P., Lau, S. H., 1994. Bumping up against the barrier with the binomial method. Journal of Derivatives 2, 6–14.
    Carr, P., 1995. Two extensions to barrier option valuation. Applied Mathematical Finance 2, 173–209.
    Chen, H. T., Chen, C. K., 1988a. Hybrid Laplace transform/finite difference method for transient heat conduction problems. International Journal for Numerical
    Methods in Engineering 26 (6), 1433–1447.
    Chen, H. T., Chen, C. K., 1988b. Hybrid Laplace transform/finite difference method for two-dimensional transient heat conduction. Journal of Thermophysics
    and Heat Transfer 2 (1), 31–36.
    Chen, H. T., Chen, T. M., Chen, C. K., 1987. Hybrid Laplace transform/finite element method for one-dimensional transient heat conduction problems. Computer
    Methods in Applied Mechanics and Engineering 63 (1), 83–95.
    Chen,W. K., 2002. Options: Theory, Practice and Application. BestWise Co. Ltd, pp. 389–390.
    Cheuk, T. H. F., Vorst, T. C. F., 1996. Complex barrier options. Journal of Derivatives 4, 8–22.
    Cox, J. C., Ross, S. A., Rubinstein, M., 1979. Option pricing: A simplified approach. Journal of Financial Economics 7, 229–263.
    Duffy, D. J., 2006. Finite difference method in financial engineering. John Wiley & Sons Ltd, pp. 64–65.
    Geman, H., Yor, M., 1996. Pricing and hedging double-barrier options: A probabilistic approach. Mathematical Finance 6, 365–378.
    Graziano, G. D., Rogers, L. C. G., 2006. Barrier option pricing for assets with markov-modulated dividends. The Journal of Computational Finance 9 (4).
    Heynen, P., Kat, H., 1994a. Crossing barriers. Risk 7, 46–49.
    Heynen, P., Kat, H., 1994b. Partial barrier options. Journal of Financial Engineering 3, 253–274.
    Heynen, P., Kat, H., 1996. Discrete partial barrier options with a moving barrier. Journal of Financial Engineering 5, 199–209.
    Honig, G., Hirdes, U., 1984. A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics 10 (1), 113–132.
    Kunitomo, N., Ikeda, M., 1992. Pricing options with curved boundaries. Mathematical Finance 2, 275–298.
    Merton, R. C., 1973. Theory of rational option pricing. Bell Journal of Economics and Management Science 4, 141–183.
    Pelsser, A., 2000. Pricing double barrier options using Laplace transforms. Finance and Stochastics 4, 95–104.
    Reimer, M., Sandmann, K., 1995. A discrete time approach for european and american barrier options, Working paper.
    Rich, D., 1994. The mathematical foundations of barrier option-pricing theory. Advances in Futures and Options Research 7, 267–311.
    Ritchken, P., 1995. On pricing barrier options. Journal of Derivatives 3, 19–28.
    Rogers, L. C. G., Zane, O., 1997. Valuing moving barrier options. Journal of Computational Finance 1, 5–11.
    Rubinstein, M., Reiner, E., 1991. Breaking down the barriers. Risk Magazine 4, 28–35.
    Sanfelici, S., 2004. Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff. Decisions in Economics and Finance 27, 125–151.
    Wang, A. M. L., Hsiao, Y. L., 2006. A PDE approach to value the discrete twoasset barrier option. Journal of Financial Studies 14 (3), 1–33.
    Wang, A. M. L., Liu, Y. H., Hsiao, Y. L., 2009. Barrier option pricing: A hybrid method approach. Quantitative Finance 9 (3), 341–352.
    Wang, A. M. L., Shen, S. Y., Chou, E. Y., Hsiao, Y. L., 2007. The valuation of window barrier options-a boundary integral method approach, Working paper.
    Widder, D. V., 1945. What is the Laplace transform ? The American Mathematical Monthly 52 (8), 419–425.
    Zvan, R., Vetzal, K. R., Forsyth, P. A., 2000. PDE methods for pricing barrier options. Journal of Economics Dynamics & Control 24, 1563–1590.

    下載圖示 校內:2014-06-01公開
    校外:2014-06-01公開
    QR CODE