簡易檢索 / 詳目顯示

研究生: 黃宥霖
Huang, Yu-Lin
論文名稱: 製備溶膠凝膠模版高分子薄膜電極用於肌酸酐濃度之交流阻抗式感測
Preparation of the sol-gel imprinted polymeric thin film fabricated electrode for AC impedance detection of creatinine concentration
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 肌酸酐分子模版高分子電化學阻抗生醫感測器
外文關鍵詞: creatinine, molecularly imprinted polymer, electrochemical impedance, biosensor
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (Creatinine) 是人體中十分重要的生理指標,其為體內肌酸的代謝最終產物。當血液流經腎臟時,腎絲球會過濾肌酸酐,並讓其隨尿液排出體內,因此藉由量測血液與尿液肌酸酐濃度可以反映人體腎臟功能的正常與否。本研究使用肌酸酐作為模版分子,3-aminopropyltriethoxysilane (APTES) 與 N-[3-(trimethoxysilyl)-propyl]aniline (TMOSPA) 作為功能性單體,tetraethyl orthosilicate (TEOS) 作為交聯劑,利用溶膠凝膠聚合法聚合形成高分子膜,之後以溶劑將肌酸酐洗脫,產生對肌酸酐具有特異性吸附效果之模版高分子 (molecularly imprinted polymer, MIP) 薄膜電極。從 scanning electron microscope (SEM) 可以鑑定出此高分子膜之存在,其厚度為9.35 μm。本研究分別以 Fourier transform infrared spectroscope (FT-IR) 與 electrochemical impedance spectroscope (EIS) 分析確認肌酸酐自 MIP 膜之脫附。由於肌酸酐無電化學活性,故後續以交流阻抗分析法感測不同濃度肌酸酐下之電阻抗訊號,製作肌酸酐檢量線,並與非模板高分子 (non-molecularly imprinted polymer, NIP) 薄膜電極比較,計算得其阻抗模印因子為 2.20,相位模印因子為40.0。另外此 MIP 電極對於肌酸酐共存物creatine 與相似物 N-hydroxysuccinimide 無明顯訊號變化,在此兩者干擾下,MIP 對肌酸酐仍保有感測效果,證明此 MIP 電極對肌酸酐之吸附對干擾物及共存物均具有選擇性。同時,此 MIP 電極可至少可重複使用 7 次。
    本論文也接續先前實驗室研究成果,合成單用 TMOSPA 作為功能性單體之 s-MIP 薄膜電極,發現其可感測肌酸酐濃度,偵測範圍跨越尿液肌酸酐濃度 (30~270 mg/dL)。搭配商用網印電極進行 s-MIP 感測層之鋪覆,可製備出微小化肌酸酐感測器,僅使用少量的肌酸酐溶液 (1 μL) 即可偵測。從以上實驗結果可知 MIP 或s-MIP 電極對肌酸酐確實都具有特異性吸附,可有效感測肌酸酐,未來可整合微電子元件,製成穿戴式微小肌酸酐生醫感測晶片,具有協助臨床診斷腎臟疾病之潛力。

    Creatinine, the waste of the creatine metabolism, is a very important physiological indicator. By measuring the serum as well as the urine creatinine concentration, we can judge the renal disease. This research take creatinine as template molecular, 3-aminopropyltriethoxy-silane (APTES) and N-[3-(trimethoxysilyl)-propyl]aniline (TMOSPA) as functional monomers, tetraethoxysilane (TEOS) as crosslinker, fabricating the polymer film via sol-gel process. After the extraction of creatinine by solvent, we can get the molecularly imprinted polymer (MIP) thin film electrode which have the specific up-taking effect toward creatinine. Owing to the lacking in electrochemical activity of creatinine, this research try to detect the creatinine concentration via AC impedance analysis, and get the calibration curve. Compared with the non-molecularly imprinted polymer (NIP) thin film electrode, the impedance imprinting factor is up to 2.20. For selectivity, the MIP electrode doesn’t show significant signal changing when detecting creatine and N-hydroxysuccinimide; moreover, when suffering from the interference of them, the MIP electrode still maintain the detecting effect, which imply that the MIP electrode can detect the creatinine specifically. This essay also only use the TMOSPA as functional monomer to fabricated s-MIP thin film electrode. We find that the s-MIP can detect the creatinine as well, and the detection range include the urine creatinine concentration range (30~270 mg/dl). By fabricating the s-MIP sensing layer onto the screen-printed electrode (SPE), we can get the microminiaturized creatinine sensor which can be used by just 1 μl creatinine solution.

    摘要 I Extended Abstract II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-1-1 生醫感測器 (Biosensor) 1 1-1-2 模版高分子 (Molecularly imprinted polymer, MIP) 2 1-1-3 研究動機與目的 2 第二章 文獻回顧 4 2-1 模版高分子 4 2-1-1 模版高分子組成 [4-9] 4 2-1-2 分子模印方式 6 2-2 模版高分子製備方法 7 2-2-1 塊狀聚合法 (bulk polymerization) 7 2-2-2 溶膠凝膠聚合法 (sol-gel polymerization) 8 2-2-3 電聚合法 (electropolymerization) 8 2-2-4 表面模印聚合法 (surface imprinting polymerization) 10 2-2-5 懸浮聚合法 (suspension polymerization) 10 2-2-6 沉澱聚合法 (precipitation polymerization) 11 2-3 模版高分子應用 11 2-3-1 分離純化 12 2-3-2 人工觸媒 12 2-3-3 感測器 12 2-4 肌酸酐 (creatinine) 15 2-4-1 生理指標 15 2-4-2 肌酸酐檢測法 16 2-6 電化學阻抗分析 (electrochemical impedance spectroscopy, EIS) 18 2-6-1 電阻抗原理簡介 18 2-6-2 圖示法與等效電路模擬 (equivalent circuit simulation) 19 第三章 實驗方法、材料與儀器 22 3-1 製備肌酸酐模版高分子電極 22 3-1-1 製備裸金電極 22 3-1-2 配製溶膠凝膠模版高分子預聚合液 22 3-1-3 製備模版高分子電極 (MIP) 22 3-1-4 製備微小化模版高分子電極 24 3-2 肌酸酐特性分析 24 3-2-1 以高效率液相層析儀定量分析肌酸酐濃度 24 3-2-2 肌酸酐循環伏安法之分析 25 3-3 電化學阻抗分析與等效電路模擬 25 3-3-1 奎斯特圖 (Nyquist plot) 與博得圖 (Bode plot) 25 3-3-2 萃洗過程之電化學阻抗分析 25 3-4 交流阻抗分析法感測肌酸酐 25 3-5 共存物與干擾物選擇性與干擾性測試 26 3-5-1 干擾性測試 26 3-5-2 選擇性測試 26 3-6 重複性測試 27 3-7 微小化 s-MIP 電極感測肌酸酐濃度 27 3-8 肌酸酐模版高分子電極之表面分析 27 3-9 傅立葉紅外線 (FT-IR) 吸收光譜分析 28 3-10 實驗藥品 29 3-11 實驗器材 30 第四章 結果與討論 31 4-1 肌酸酐電化學特性 31 4-2 感測材料─肌酸酐模版高分子 32 4-2-1 溶膠凝膠聚合法 32 4-2-2 單體選擇 32 4-2-3 交聯劑之選擇 32 4-2-4 非模版高分子 (non-molecularly imprinted polymer, NIP) 合成 32 4-3 溶膠凝膠模版高分子薄膜電極合成與鑑定 34 4-3-1 聚合溶液體積與薄膜厚度探討 34 4-3-2肌酸酐之洗脫 39 4-3-3 溶膠凝膠模版高分子薄膜電阻抗特性 43 4-3-4 以單一功能性單體製作 MIP 電極 45 4-4 模版高分子電極感測機制探討 46 4-5 交流阻抗分析法感測肌酸酐 48 4-5-1 交流阻抗分析頻率選擇 48 4-5-2 肌酸酐檢量線 51 4-5-3 溶膠凝膠模版高分子模印效果 53 4-6選擇性與干擾性測試 55 4-6-1 共存物選擇性與干擾性 56 4-6-2 相似物選擇性與干擾性 57 4-7 重複性測試 59 4-8 使用單一單體 (TMOSPA) 製作肌酸酐模版高分子 (s-MIP) 感測器 60 4-8-1 s-MIP 薄膜電極與裸金電極之比較 60 4-8-2 s-MIP 電極感測頻率選擇與吸附肌酸酐前後 EIS 分析 61 4-8-3 肌酸酐感測 63 4-8-4 尿液肌酸酐濃度範圍感測 64 4-8-5 s-MIP 平衡時間之縮短 64 4-8-6 電極微小化 66 第五章 結論 70 參考文獻 71

    1. BR Eggins, Chemical Sensors and Biosensors, John Wiley & Sons, 2002.
    2. C Malitesta, E Mazzotta, RA Picca, A Poma, I Chianella, SA Piletsky, MIP sensors ─ the electrochemical approach, Anal Bioanal Chem, 402, 1827−1846, 2012.
    3. Web of Science, THOMSON REUTERS, www.webofscience.com, 2015.04.13.
    4. 許庭榕, 以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐, 國立成功大學化工系碩士學位論文, 2010.
    5. HA Tsai, MJ Syu, Preparation of imprinted poly(tetraethoxysilanol) sol-gel for the specific uptake of creatinine, Chem Eng J, 168, 1369−1376, 2011.
    6. YS Chang, TH Ko, TJ Hsu, MJ Syu, Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine, Anal Chem, 81, 2098−2105, 2009.
    7. 林宗坤, 合成螢光單體 4-甲胺基-1,8-乙烯苯胺基奈基醯亞胺以製備模版螢光高分子材料對肌酸酐模印分子進行專一性吸附之探討, 國立成功大學化工系碩士學位論文, 2012.
    8. 曾彥迪, 以混摻室溫離子液體之模版高分子薄膜修飾電極進行對膽紅素之電流式感測, 國立成功大學化工系碩士學位論文, 2013.
    9. 何鎧亘, 合成功能性單體 2-胺基-3-硝基-5-乙烯基吡啶以製備模版高分子膜用於肌酸酐交流阻抗式之感測, 國立成功大學化工系碩士學位論文, 2014.
    10. MJ Whitcombe, I Chianella, L Larcombe, SA Piletsky, J Noble, R Porter, A Horgan, The rational development of molecularly imprinted polymer-based sensors for protein detection, Chem Soc Rev, 40, 1547−1571, 2011.
    11. TJ Li, PY Chen, PC Nien, CY Lin, R Vittal, TR Ling, KC Ho, Preparation of a novel molecularly imprinted polymer by the sol-gel process for sensing creatinine, Anal Chim Acta, 711, 83−90, 2012.
    12. B Rezaei, MKL Boroujeni, AA Ensafi, Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode, Biosens Bioelectron, 60, 77−83, 2014.
    13. G Yang, F Zhao, B Zeng, Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor, Biosens Bioelectron, 53, 447−452, 2014.
    14. G Wulff, A Sarhan, K Zabrocki, Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Lett, 44, 4329 −4433, 1973.
    15. G Wulff, W Vesper, R Grobe-Einsler, A Sarhan, Enzyme-analogue built polymers on the synthesis of polymers containing chiral cavities and their use for the resolution of racemates, Makromol Chem, 178, 2799−2816, 1977.
    16. T Takeuchi, T Mori, A Kuwahara, T Ohta, A Oshita, H Sunayama, Y Kitayama, T Ooya, Conjugated-protein mimics with molecularly imprinted reconstructible and transformable regions that are asSEMbled using space-filling prosthetic groups, Angew Chem-Int Edit, 53, 12765−12770, 2014.
    17. H Yan, HK Row, Characteristic and synthetic approach of molecularly imprinted polymer, Int J Mol Sci, 7, 155−178, 2006.
    18. K Noworyta, W Kutner, CA Wijesinghe, SG Srour, F D'Souza, Nicotine, cotinine, and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors, Anal Chem, 84, 2154−2163, 2012.
    19. A Poma, A Guerreiro, MJ Whitcombe, EV Piletska, APF Turner, SA Piletsky, Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template-plastic antibodies, Adv Funct Mater, 23, 2821−2827, 2013.
    20. I Bakas, A Hayat, S Piletsky, E Piletska, MM Chehimi, T Noguer, R Rouillon, Electrochemical impedimetric sensor based on molecularly imprinted polymers/ sol-gel chemistry for methidathion organophosphorous insecticide recognition, Talanta, 130, 294−298, 2014.
    21. A Kloskowski, M Pilarczyk, W Chrzanowski, J Namieśnik, Sol-gel technique—a versatile tool for adsorbent preparation, Crit Rev Anal Chem, 40, 172−186, 2010.
    22. J Li, MJ Sailor, Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon, Biosens Bioelectron, 55, 372−378, 2014.
    23. W Zhang, XW He, Y Chen, WY Li, YK Zhang, Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein, Biosens Bioelectron, 31, 84−89, 2012.
    24. Z Zhang, Y Long, L Nie, S Yao, Molecularly imprinted thin film self-asSEMbled on piezoelectric quartz crystal surface by the sol-gel process for protein recognition, Biosens Bioelectron, 21, 1244−1251, 2006.
    25. R Gao, X Mu, J Zhang, Y Tang, Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core-shell sol-gel polymerization, J Mater Chem B, 2, 783−792, 2014.
    26. X Kan, Z Xing, A Zhu, Z Zhao, G Xu, C Li, H Zhou, Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition, Sensor Actuat B Chem, 168, 395−401, 2012.
    27. D Cai, L Ren, H Zhao, C Xu, L Zhang, Y Yu, H Wang, Y Lan, MF Roberts, JH Chuang, MJ Naughton, Z Ren, TC Chiles, A molecular-imprint nanosensor for ultrasensitive detection of proteins, Nat Nanotechnol, 5, 597−601, 2010.
    28. Y Li, Y Li, L Huang, Q Bin, Z Lin, H Yang, Z Cai, G Chen, Molecularly imprinted fluorescent and colorimetric sensor based on TiO2@Cu(OH)2 nanoparticle autocatalysis for protein recognition, J Mater Chem B, 1, 1256−1262, 2013.
    29. L Li, L Yang, Z Xing, X Lu, X Kan, Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition, Analyst, 138, 6962−6968, 2013.
    30. K Fukazawa, K Ishihara, Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing, Biosens Bioelectron, 25, 609−614, 2009.
    31. K Fukazawa, Q Li, S Seeger, K Ishihara, Direct observation of selective protein capturing on molecular imprinting substrates, Biosens Bioelectron, 40, 96−101, 2013.
    32. AG Mayes, K Mosbach, Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase, Anal Chem, 68, 3769−3774, 1996.
    33. JP Schillemans, CFV Nostrum, Molecularly imprinted polymer particles: synthetic receptors for future medicine, Nanomedicine, 1, 437−447, 2006.
    34. G Zhu, J Fan, Y Gao, X Gao, J Wang, Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs, Talanta, 84, 1124−1132, 2011.
    35. MJ Syu, TJ Hsu, ZK Lin, Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine, Anal Chem, 82, 8821−8829, 2010.
    36. S Zeng, S Hu, J Xia, T Anderson, XQ Dinh, XM Meng, P Coquet, KT Yong, Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors, Sensor Actuat B Chem, 207, 801−810, 2015.
    37. Y Kamon, R Matsuura, Y Kitayama, T Ooya, T Takeuchi, Precisely controlled molecular imprinting of glutathione-s-transferase by orientated template immobilization using specific interaction with an anchored ligand on a gold substrate, Polym Chem, 5, 4764−4771, 2014.
    38. MA Brett, MO Brett, Electrochemistry − principles, methods, and applications, United States: Oxford University Press, 1993.
    39. AJ Bard, LR Faulkner, Electrochemical methods fundamentals and applications, second edition, 368−414, 2001.
    40. KK Reddy, KV Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis, Sensor Actuat B Chem, 183, 356−363, 2013.
    41. TL Delaney, D Zimin, M Rahm, D Weiss, OS Wolfbeis, VM Mirsky, Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization, Anal Chem, 79, 3220−3225, 2007.
    42. C Warwick, A Guerreiro, A Gomez-Caballero, E Wood, J Kitson, J Robinson, A soares, conductance based sensing and analysis of soluble phosphates in wastewater, Biosens Bioelectron, 52, 173−179, 2014.
    43. J Moret, FTC Moreira, SAA Almeida, MGF Sales, New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes, Mater Sci Eng C Mater Biol Appl, 43, 481−487, 2014.
    44. C Sung, K Hearn, J Lutkenhaus, Thermal transitions in hydrated layer-by-layer asSEMblies observed using electrochemical impedance spectroscopy, Soft Matter, 10, 6467−6476, 2014.
    45. CF Lin, HH Tsai, YZ Juang, YK Su, WL Li, RL Wang, HY Lin, JY Guo, TJ Tsai, BD Liu, A CMOS-compatible biological transducer for creatinine detection: MIP-gate ISFET, IEEE Circuits and Systems International Conference on Testing and Diagnosis, 1−4, 2009.
    46. S Narayanan, H Appleton, Creatinine:a review, Clin Chem, 26, 1119−1126, 1980.
    47. 陳苓怡,郭美娟,黃尚志,蔡哲嘉,陳鴻鈞, 臨床評估腎臟功能方法之優缺點, 內科學誌, 23, 34−41, 2012.
    48. 吳明儒, 評估腎臟功能的方法, 腎臟與透析, 19, 45−49, 2007.
    49. JD Kopple, National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure, Am J Kidney Dis, 37, S66−S70, 2001.
    50. L Tymecki, J Korszun, K Strzelak, R Koncki, Multicommutated flow analysis system for determination of creatinine in physiological fluids by Jaffé method, Anal Chim Acta, 787, 118−125, 2013.
    51. E Mohabbati-Kalejahi, V Azimirad, M Bahrami, A Ganbari, A review on creatinine measurement techniques, Talanta, 97, 1−8, 2012.
    52. A Amirudin, D Thierry, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals, Prog Org Coat, 26, 1−28, 1995.
    53. X Wang, Q Xiang, B Liu, L Wang, T Luo, D Chen, G Shen, TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries, Sci Rep, 3, 1−8, 2013.
    54. LG Wade, Organic Chemistry, 7th ed., 510–560, Pearson Education, America, 2010.
    55. N Trendafilova, AP Kurbakova, IA Efimenko, M Mitewa, PR Bontchev, Infrared spectra of Pt(II) creatinine complexes. Normal coordinate analysis of creatinine and Pt(creat)2(NO2)2, Spectrochim Acta A, 47, 577−584, 1991.

    下載圖示 校內:2025-08-14公開
    校外:2025-08-14公開
    QR CODE