| 研究生: |
張韶崴 Chang, Shao-Wei |
|---|---|
| 論文名稱: |
溫度效應對砷化銦鎵半導體量子點雷射特性之影響 Effect of Temperature on Characteristics of InGaAs Semiconductor Quantum Dot Laser |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 注入電流密度 、量子點雷射 、速率方程式 、輸出功率 |
| 外文關鍵詞: | injection current density, rate equation, quantum dot laser, output power |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子點雷射在近幾年來開始蓬勃發展,主要是因為它有高溫穩定的特性,以及低的起始電流密度,可應用於光碟機讀寫頭、紅外線偵測器,以及現今最熱門的光纖通訊等方面,且因為量子點製作技術逐漸改良,使得各量子點的尺寸、均勻度有明顯的改善,得以發展性能較佳的量子點雷射。
本文研究中主要是在探討單層、四層及八層量子點雷射溫度在270K到350K情況下雷射特性的影響,其中包括不同溫度下載子佔據機率、載子密度和內部損耗對於注入電流密度(injection current density)與輸出功率(output power)的關係,以及不同溫度不同有效橫截面面積下輸出功率與注入電流密度的關係,還有共振腔長度與共振腔光學效率倒數的關係。結果可以發現量子點的層數可以大大的增進我們量子點雷射的特性,而溫度卻會仰制我們的雷射特性,因而造成輸出功率及其他性質的減低。
The technology of quantum dot laser has attracted great attention recently, due to its stable properties in high temperature and the low threshold current density. Its applications include the header of read-write of the CD-ROM drive, infrared remote sensing the optical fiber and communication, and so on. Due to significant progress in manufacturing technology of quantum dot layer structure, the size and uniformity of quantum dots have achieved great improvement. Consequently, the development of high performance quantum-dot laser becomes possible.
This paper mainly investigates the effect of single layer, four layers and eight layers quantum dot on the laser characteristics at temperature range from 270K to 350K. Moreover, the influences of confined-carrier level occupancy, carrier density, cross section and internal loss on injection current density and output power at different temperature are also considered.
In conclusion, we can find as the layer’s number of quantum dot increases the characteristics of laser can be improved significantly. However, as the temperature increase the laser’s characteristics, such as output power, will become degraded.
[1] 林奕佐, “半導體量子點雷射之臨界電流密度探討,” 國立成功大學機械研究所, 碩士論文, 2004
[2] http://optics.org/articles/news/10/9/13/1..
[3] L. V. Asryan and S. Luryi, “Effect of Interal Optical Loss on Threshold Characteristics of Semiconductor Lasers With a Quantum-Confined Active Region,” IEEE J. Quantum Electron. ,vol. 40, pp. 833-842, July (2004)
[4] D. Z. Garbuzov, A.V. Ovchinnikov, N. A. Pikhtin, Z. N. Sokolova, and V.B. Khalfin, “Experimental and theoretical investigations of singularities of the threshold and power characteristics of InGaAsP/InP separate-confinement double-heterostructure lasers ( ),” Sov. Phys. Semicond., Vol. 25, no. 5, pp. 560–564, (1991)
[5] M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S.Arai, “The temperature dependence of the threshold current of GaInAs-PAnP DH lasers,” IEEE J. Quantum Electron., Vol. QE-17, pp. 611, (1981)
[6] C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., Vol. QE-19, pp. 947–952, (1983)
[7] M. Asada, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers,” IEEE J. Quantum Electron., Vol.QE-20, pp. 745, (1984)
[8] N. A. Gun’ko, V. B. Khalfin, Z. N. Sokolova, and G. G. Zegrya, “Optical loss in InAs-based long-wavelength lasers,” J. Appl. Phys., Vol. 84, no.1, pp. 547–554, (1998)
[9] M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer and D. Bimberg, “Ultranarrow Luminescence Lines from Single Quantum Dots”, Phys. Rev. Lett. 74 (20), 4043 (1995)
[10] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers”, Van Nostrand Reinhold, (1993)
[11] R. Dingle and C. H. Henry, “Quantum effects in heterostructure,” U.S. Patent No. 3982207, 21, September, (1976)
[12] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., Vol. 40, no. 11, pp. 939–941, (1982)
[13] M.Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron., Vol. 22, no. 9, pp. 1915–1921, (1986)
[14] Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron., Vol. 25, pp. 2001–2006, (1989)
[15] N.Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low threshold, large injection laser emission from (InGa)As quantum dots,” Electron. Lett. Vol. 30, no. 17, pp. 1416–1417, (1994)
[16] D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum dot heterostructure,” John Wiley & Sons, (1999)
[17] M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. vol. 36, pp. 4181–4187, (1997)
[18] L. V. Asryan and R. A. Suris, “Temperature Dependence of the Threshold Current Density of a Quantum Dot Laser,” IEEE J. Quantum Electron. Vol. 34, no. 5, pp. 841–850, (1998)
[19] W. Z. Guo, C. Y. Hai, L. F. Qi, Xu Bo, “Self-assembled quantum dots, wires and quantum-dot lasers, ”Journal of Crystal Growth, pp. 1132–1139, (2001)
[20] C.Ni.Allen , P. J. Poole , P. Barrios , P. Marshall , G. Pakulski, S. Raymond and S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E. Vol 26, no 1-4, p 372-376, (2005)
[21] http://nano.nchc.org.tw/dictionary/quantum_dots.html
[22] 謝育民, “電子在半導體量子點中的傳輸性質與穿遂率,” 國立成功大學機械研究所, 碩士論文, 2004.
[23] http://www.chemnet.com.tw/magazine/200209/index1.htm
[24] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, “Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells,” Phys. Rev. B 53, R13242–R13245 (1996)
[25] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988)
[26] http://www.eas.asu.edu/~bird
[27] T. Kaizu, K. Yamaguchi, “Self size-limiting process of InAs quantum dots grown by molecular beam epitaxy,” Jpn. J. Appl. Phys. 40, pp.1885-1887, (2001)
[28] T. Suzuki, Y. Temko, M. C. Xu, and K. Jacobi “InAs quantum dots on GaAs(112)B,” J. Appl. Phys. 96, 11, (2004)
[29] http://www.fzu.cz/oddeleni/povrchy/mbe/mbe.php3
[30] 川合 知二, 日本原著, “圖解奈米科技,” 工業技術研究院.
[31] D. A. Neamen著,李世鴻譯,“半導體物理及元件,” 美商麥格羅.希爾國際股份有限公司 台灣分公司, 2003.
[32] S. O. Kasap, “Optoelectronic and Photonics Principles and Practices,” Prentice Hall, (2001)
[33] 張守進,劉醇星,姬梁文, “半導體雷射” 行政院國家科學發展委員會, 科學發展, 349, 91年1月.
[34] L. V. Asryan and R. A. Suris, “Theory of threshold characteristics of quantum dot lasers; effect of quantum dot parameter dispersion” International journal of high speed electronics and systems, Vol. 12, No. 1 111-176 (2002).
[35] M. Sugawara,“Self-assembled InGaAs/GaAs quantum dots,” Academic pressc, (1999)
[36] L. V. Asryan, S. Luryi, and R. A. Suris, “Internal efficiency of semiconductor lasers with a quantum-confined active region,” IEEE J. Quantum Electron. Vol. 39, pp. 404–418, (2003)
[37] L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. Vol. 11, no. 4, pp. 554–567, (1996)
[38] L. V. Asryan and R. A. Suris, “charge neutrality violation in quantum dot laser, ” IEEE J. Select. Topics Quantum Electron. Vol. 3, pp. 148-157, (1997)
[39] 林柏宏, “內部光學損耗對半導體量子點雷射臨界電流密度之影響,”國立成功大學機械研究所, 碩士論文, 2005.
[40] L. V. Asryan, “Maximun power of quantum dot laser versus internal loss” J. Appl. Phys. 88, 073107 (2006)
[41] L. V. Asryan, “Limitations on standard procedure of determining internal loss and efficiency in quantum dot lasers,” J. Appl. Phys. Lett. 99, 013102 (2006)