| 研究生: |
林威宏 Lin, wei-hong |
|---|---|
| 論文名稱: |
無元素法在強度因子之分析 |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 應力強度因子 、無元素法 |
| 外文關鍵詞: | stress intensity factor, meshless method |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用無元素法(Meshfree method),配合微分再生核近似法(Differential Reproducing Kernel Approximation, DRKM),加上符合不同邊界條件的應力奇異性項次來分析應力強度因子(stress intensity factor),計算奇異點附近變化急劇的應力情形,結果發現在加了應力奇異性項次模擬後,將不需要像一般數值方法那麼多的佈點數,就可以有效計算奇異點附近的應力狀態,以及計算應力強度因子。
數值算例中,求解懸臂樑問題時,可以求得最後收斂的各應力強度因子,並說明正確的固定端應力趨勢。對於裂縫問題,計算結果發現可以不需要在奇異點附近加太多的佈點,就能達到理想的精度,最後關於裂縫問題延伸中,說明另一種減少強度因子計算量的方法,也就是在奇異點附近不加密佈點,而只選擇某些點符合控制方程式,藉由如此可減少加密點數,簡化計算量。
none
[1] Lucy,L.B.:Anumerical approach to the testing of the fission hypothesis,The Astron.J.8(12),1013-1024(1977).
[2] Nalroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse element, Comput. Mech. 10,307-318(1992).
[3] Belytschko, T., Gu, L. and Lu, Y. Y.: Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2,519-534(1994).
[4]盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論壇(2000)論文集,國立中央大學土木系,2000.
[5] Liu, W. K., Jun, S. and Zhang, Y. F.: Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106(1995)
[6] Chen, J. S., Wu, C. T. and Liu, W. K.: Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures, Computer Method in Applied Mechanics And Engineering. 139, 195-227(1996).
[7] Li, s., Hao, W., Liu, W. K.: Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102-116(2000)
[8] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L. and Sacco, C.: A Stabilized finite point method for analysis of fluid mechanics problems, Computer Method in Applied Mechanics & Engineering, 139,315-346(1996).
[9] Zhu, T. and Atluri,S.N.: A Meshless Numberical Method Based on the Local Boundary Integral Equation (LBIE) to Solve Linear and Non-Linear Boundary Value Problems, Engineering Analysis with Boundary Elements, 23, 357-389(1999).
[10] Belytschko, T., Krongauz, Y., Orang, D., Fleming, N.:Meshless method: An Overview and Recent Development, Computer Method in Applied Mechanics & Engineering, 139, 3-47(1996).
[11] Krysl, P. and Belytschko, ESFLIB:A Library to Compute The Element Free Galerkin Shape Function, Computer Methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).
[12] Williams, M. L., “Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol.74, pp.526-528 (1952)
[13] Reedy, E. D. “Intensity of the stress singularity at the interface corner between a bonded elastic and rigid layer”, Engineering Fracture Mechanics, Vol.36, No.4, pp.573-583 (1990)
[14] Tada, H., Paris, P. C. and Irwin, G. R.: The Stress Analysis of Cracks Handbook, Third Edition (2000).
[15] 陳禎康, “微分再生核近似法於二為彈力之應用” , 碩士論文, 國立成功大學土木工程研究所, pp.37-39 (2002)