簡易檢索 / 詳目顯示

研究生: 林威宏
Lin, wei-hong
論文名稱: 無元素法在強度因子之分析
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 應力強度因子無元素法
外文關鍵詞: stress intensity factor, meshless method
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用無元素法(Meshfree method),配合微分再生核近似法(Differential Reproducing Kernel Approximation, DRKM),加上符合不同邊界條件的應力奇異性項次來分析應力強度因子(stress intensity factor),計算奇異點附近變化急劇的應力情形,結果發現在加了應力奇異性項次模擬後,將不需要像一般數值方法那麼多的佈點數,就可以有效計算奇異點附近的應力狀態,以及計算應力強度因子。
    數值算例中,求解懸臂樑問題時,可以求得最後收斂的各應力強度因子,並說明正確的固定端應力趨勢。對於裂縫問題,計算結果發現可以不需要在奇異點附近加太多的佈點,就能達到理想的精度,最後關於裂縫問題延伸中,說明另一種減少強度因子計算量的方法,也就是在奇異點附近不加密佈點,而只選擇某些點符合控制方程式,藉由如此可減少加密點數,簡化計算量。

    none

    摘要Ⅰ 誌謝Ⅱ 目錄Ⅲ 表目錄Ⅴ 圖目錄Ⅵ 第一章 緒論1 1.1 前言1 1.2 無元素的發展2 1.3 本文架構4 第二章 理論基礎6 2.1 離散的再生核近似6 2.2 DRKM再生核形狀函數的微分8 2.3 應力奇異性項次12 2.3.1 Free-Free Wedge15 2.3.2 Free-Fixed Wedge16 第三章 控制方程式與邊界條件19 3.1 二維平板的控制方程式19 3.2 邊界條件21 3.2.1 自由端22 3.2.2 輥支承23 3.2.3 固定端24 3.3 應力強度因子25 第四章 數值算例28 4.1 懸臂樑受拉力作用28 4.2 懸臂樑受彎矩作用36 4.3 裂縫問題48 4.4 裂縫問題之延伸53 第五章 結論56 參考文獻58 附錄1 60 附錄2 66

    [1] Lucy,L.B.:Anumerical approach to the testing of the fission hypothesis,The Astron.J.8(12),1013-1024(1977).
    [2] Nalroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse element, Comput. Mech. 10,307-318(1992).
    [3] Belytschko, T., Gu, L. and Lu, Y. Y.: Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2,519-534(1994).
    [4]盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論壇(2000)論文集,國立中央大學土木系,2000.
    [5] Liu, W. K., Jun, S. and Zhang, Y. F.: Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106(1995)
    [6] Chen, J. S., Wu, C. T. and Liu, W. K.: Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures, Computer Method in Applied Mechanics And Engineering. 139, 195-227(1996).
    [7] Li, s., Hao, W., Liu, W. K.: Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102-116(2000)
    [8] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L. and Sacco, C.: A Stabilized finite point method for analysis of fluid mechanics problems, Computer Method in Applied Mechanics & Engineering, 139,315-346(1996).
    [9] Zhu, T. and Atluri,S.N.: A Meshless Numberical Method Based on the Local Boundary Integral Equation (LBIE) to Solve Linear and Non-Linear Boundary Value Problems, Engineering Analysis with Boundary Elements, 23, 357-389(1999).
    [10] Belytschko, T., Krongauz, Y., Orang, D., Fleming, N.:Meshless method: An Overview and Recent Development, Computer Method in Applied Mechanics & Engineering, 139, 3-47(1996).
    [11] Krysl, P. and Belytschko, ESFLIB:A Library to Compute The Element Free Galerkin Shape Function, Computer Methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).
    [12] Williams, M. L., “Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol.74, pp.526-528 (1952)
    [13] Reedy, E. D. “Intensity of the stress singularity at the interface corner between a bonded elastic and rigid layer”, Engineering Fracture Mechanics, Vol.36, No.4, pp.573-583 (1990)
    [14] Tada, H., Paris, P. C. and Irwin, G. R.: The Stress Analysis of Cracks Handbook, Third Edition (2000).
    [15] 陳禎康, “微分再生核近似法於二為彈力之應用” , 碩士論文, 國立成功大學土木工程研究所, pp.37-39 (2002)

    下載圖示 校內:立即公開
    校外:2003-07-30公開
    QR CODE