簡易檢索 / 詳目顯示

研究生: 謝文翔
Hsieh, Wen-Hsiang
論文名稱: 新式史托克參數橢圓偏光儀於薄膜與扭轉向列型液晶之光學參數量測研究
New Stokes-parameter-based Polarimeter for Determination of Optical Properties of Thin Film and Twisted Nematic Liquid Crystal Cell
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 繆勒矩陣史托克參數等向性薄膜非等向性薄膜橢圓偏光儀扭轉向列型液晶
外文關鍵詞: Mueller Matrix, Stokes Parameters, Isotropic Thin Film, Anisotropic Thin Film, Ellipsometry, Twisted Nematic Liquid Crystal Cell
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展繆勒矩陣與史托克參數偏光儀來量測光學等向性與非等向性薄膜之光學參數;此量測技術為應用史托克參數成功解出等向性橢偏參數(Ψpp 與Δpp)與非等向性橢偏參數(Ψpp,Ψps,Ψsp,Δpp,Δps與Δsp)。橢偏參數Ψ與Δ之量測範圍為0~90°與0~360°。再應用非等向性橢偏理論於扭轉相列型液晶之量測。最後,利用基因演算法成功分析出等向性材料之折射率(n)與厚度,非等向性材料之快軸折射率(ne),慢軸折射率(no)與厚度及扭轉相列型液晶之預傾角(θ),扭轉角(φ)與厚度。
    由文獻回顧得知,此研究為第一個發展出利用史托克參數橢偏演算法去求解光學參數。本研究亦成功模擬出等向性,非等向性薄膜與扭轉向列型液晶之橢偏參數與光學參數,並經實驗驗證。綜觀,此研究成果將會對於等向性與非等向性薄膜以及扭轉相列型液晶之光學參數之量測研究,踏出重要一步。

    A new technique to measure ellipsometric constants for the isotropic and anisotropic thin film by Stokes polarimeter is proposed. The measuring technique is using the Stokes parameters to determine ellipsometric parameters (Ψpp and Δpp) in the isotropic thin film and ellipsometric parameters (Ψpp,Ψps,Ψsp,Δpp,Δps, and Δsp) in the anisotropic thin film. The range of Ψand Δ are 0~90°and 0~360°, respectively. Then, the proposed scheme for the anisotropic thin film is applied to study the optical properties of the vertical-alignment liquid crystal device. Finally, all the optical parameters as the refraction index (n) and thickness of the isotropic thin film; the extraordinary refraction index (ne) and ordinary refraction index (no) and thickness of the anisotropic thin film; and the pretilt angle(θ), twist angle(φ) and cell gap of TNLC cell are successfully extracted by using genetic algorithm in curve fitting for demonstrations.
    From author’s knowledge, this is the first finding that the optical parameters could be decoupled in the ellipsometric model with the Stokes parameters. The optical parameters of the isotropic and anisotropic thin films and TNLC cells are extracted simultaneously and successfully. In conclusion, this could be an important step for researches on optical measurements in isotropic and anisotropic thin films and TNLC cells. As compared to the other existing techniques, this new method supplies an easier and cheaper way to extract the ellipsometric parameters from isotropic and anisotropic materials.

    Abstract…................................................ I 中文摘要................................................III 誌謝....................................................IV Table of Contents........................................V List of Figures.......................................VIII List of Tables.........................................XVI Chapter 1 Introduction...................................1 1.1 Preface..............................................1 1.2 Review of the General Ellipsometry...................2 1.3 Review of the Mueller Matrix Method in Ellipsometer.. 5 1.4 Review of the Twisted Nematic Liquid Crystal Measurements ........................................10 1.5 Overview of Chapters................................11 Chapter 2 Basic Mathematical Models.....................13 2.1 Stoke Parameters Method.............................13 2.2 Genetic Algorithm Model.............................16 Chapter 3 Basic Theory of Ellipsometry for the Isotropic and Anisotropic Thin Films....................20 3.1 Principle of the Isotropic Thin Film................20 3.1.1 Isotropic Elliposmetric Parameters...............20 3.1.2 Reflection index for the Isotropic Thin Film.....21 3.2 Principle of the Anisotropic Thin Film..............23 3.2.1 Anisotropic Ellipsometric parameters.............23 3.2.2 4×4 Matrix Method................................25 3.2.3 General Transfer Matrix..........................27 3.2.4 Partial Transfer Matrix..........................29 3.2.5 Incident Matrix..................................32 3.2.6 Exit Matrix......................................33 3.2.7 Reflection index for an Anisotropic Thin Film....34 Chapter 4 Analysis and Experiment for an Isotropic Thin Film..........................................35 4.1 Jones matrix and Mueller Matrix of an Isotropic Thin Film ................................................35 4.2 Optical Parameter in an Isotropic Thin Film by Stokes Parameters Method...................................37 4.3 Analytical Results in Simulation of an Isotropic Thin Film ................................................40 4.3.1 Analysis of an Isotropic Thin Film for Demonstration....................................40 4.3.2 Error Analysis in Incident Angle θi for an Isotropic Thin Film..............................41 4.3.3 Error Analysis in ±0.005° Variation of Stokes Parameter from a Commercial Polarimetry...........42 4.3.4 Sensitivity Analysis in System with Various Optical Parameters for an Isotropic Thin Film.............44 4.4 Experimental Setup and Results for an Isotropic Thin Film ................................................46 Chapter 5 Analysis and Experiment for an Anisotropic Thin Film..........................................53 5.1 Jones Matrix and Mueller Matrix of an Anisotropic Thin Film................................................53 5.2 Optical Parameter in an Anisotropic Thin Films by Stokes Parameters Method............................55 5.3 Analytical Results in Simulation in an Anisotropic Thin Film ................................................59 5.3.1 Analysis of an Anisotropic Thin Film for Demonstration....................................59 5.3.2 Error Analysis in Incident Angle θi and Euler Angle φe for an Anisotropic Thin Film............61 5.3.3 Error Analysis in ±0.005° Variation of Stokes Parameter from a Commercial Stoke Polarimetry....63 5.3.4 Sensitivity Analysis in Various Optical Parameters of an Anisotropic Thin Film......................65 5.4 Experimental Setup and Results for an Anisotropic Thin Film ................................................70 Chapter 6 Analysis and Experiment for a Twisted Nematic Liquid Crystal Cell...........................80 6.1 Principle and Jones Matrix of a TNLC Cell...........80 6.2 New Stokes Parameter Method for a TNLC Cell.........89 6.3 Sensitivity Analysis in Various Optical Parameters of a TNLC Cell.........................................90 6.4 Experimental Setup and Results for a TNLC Cell......96 Chapter 7 Conclusions and Future Works.................105 7.1 Conclusions........................................105 7.1.1 Conclusions of Measurement in an Isotropic Thin Film............................................105 7.1.2 Conclusions of Measurement in an Anisotropic Thin Film............................................106 7.1.3 Conclusions of Measurement in a TNLC Cell.......107 7.2 Future Works .......................................108 Bibliography...........................................109 Autobiography..........................................116

    Acher, O., Bigan, E., and Drevillon, B.,“Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum., Vol. 60, pp. 65–77, (1989).

    Adamson, P., “Optical diagnostics of anisotropic nanoscale films on transparent isotropic materials by integrating reflectivivty and ellipsometry,” Appl. Opt., Vol. 48, pp.5906-5916, (2009).

    Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, North Holland, Amsterdam (1977).

    Aspenes, D. E. and Studna, A. A., “High precision scanning ellipsometer,” Appl. Opt., Vol. 14, pp. 220-228, (1975).

    Berreman, D. W., “Optics in Stratified and Anisotropic Media 4 × 4-Matrix Formulation,” J. Opt. Soc. Am., Vol. 62, pp. 502, (1972).

    Chen, P. C., Lo, Y. L., Yu, T. C., Lin, J. F. and Yang, T. T., “Mueller-matrix-based Polarimeter for the Determination of the Properties of Optically Anisotropic Materials,” Optics Express, Vol. 17, pp.15860-15884, (2009).

    Chipman, R.A., “Polarization analysis of optical systems,” Optical Engineering, Vol. 28, pp. 90-99, (1989).

    Collins, R. W. and Koh, J., “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A, Vol. 16, pp. 1997–2006, (1999).

    Compain, E., Drevillon, B., Huc, J., Parey, J. Y. and Bouree, J. E., “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films, Vol. 47, pp. 313–314, (1998).

    Hecht, E., Handbook of Optics, Addison Wesley, (2002).

    Hauge, P. S. and Dill, F. H., “A rotating-compensator Fourier ellipsometer,” Opt. Commun., Vol.14, pp. 431-43, (1975).

    Hauge, P. S., Muller, R.H. and Smith, C.G., “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci., Vol. 96, pp. 81–107, (1980).

    Fujiwara, H., Spectroscopic Ellipsometry – principles and applications, John Wiley & Sons Ltd, The Atrium, (2007).

    Hong, Q., Wu, T.X., Zhu, X., Lu, R., and Wu, S. T., “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett., Vol. 86, pp. 121107, Mar, (2005).

    Hong, S. H., Jeong, Y. H., Kim, H. Y., Cho, H. M., Lee, W. G. and Lee, S. H., "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys., Vol. 87, pp. 8259 - 8263, (2000).

    Jasperson, S. N. and Schnatterly, S. E., “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum., Vol. 40, pp. 761-767, (1969).

    Jellison, G. E. Jr., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films, Vol. 313–314, pp.33–39, (1998).

    Jellison, G. E. Jr. and Modine, F. A., “Two-modulator generalized ellipsometry: theory,” Appl. Opt., Vol. 36, pp. 8190–8198, (1997).

    Jellison, G. E. Jr., “Spectroscopic ellipsometry characterization of thin-film silicon nitride,” Thin Solid Films, Vol. 33, pp. 313–314, (1998).

    Khoo, I.C. and Simoni, F., Physics of Liquid Crystalline Materials, Gorden and Breach Science Publishers, (1991).

    Laskarakis, A., Logothetidis, S., Pavlopoulou, E. and Gioti, M., "Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films, Vol. 455-456, pp. 43-49, (2003).

    Lee, J., Rovira, P. I., An, I., and Collins, R. W., “Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum., Vol. 69, pp. 1800–1810, (1998).

    Lo, Y. L, Pham, T. and Chen, P. C, “Characterization on five effective parameters of anisotropic optical material using Stokes parameters- demonstration by a fiber-type polarimeter,” Optics Express, Vol. 9, pp. 9133–9150, (2010).

    Naciri, A. En, Johann, L., Kleim, R., Sieskind, M. and Amann, M., ”Spectroscopic ellipsometry of anisotropic materials: application to the optical constants of HgI2,” Appl. Opt., Vol. 38, pp. 647, (1999).

    Paik, W. and Bockris, J. O’M, “Exact ellipsometric measurement of thickness and optical properties of a thin light-absorbing film without auxiliary measurements,” Surf. Sci., Vol. 28, pp.61-68, (1971).

    Rothen, A.,“The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films,” Rev. Sci. Instrum., Vol. 16, pp. 26-30, (1945).

    Schubert, M., Rheinlander, B., Cramer, C., Schmiedel, H., Johs, B., Herzinger, C. M., and Woollam, J. A., “Generalized transmission ellipsometry for twisted
    biaxial dielectric media: application to chiral liquid crystals” J. Opt. Soc. Am. A, Vol.13, pp.1930, (1996).

    Schubert, M., Tiwald, T. E., and Woollam, J. A., “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt., Vol. 38, pp. 177–187, (1999).

    Schubert, M., Rheinländer, B., Woollam, J. A., Johs, B., and Herzinger, C., “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A, Vol. 13, pp. 875–883, (1996).

    Schubert, M., “Polarization-dependent optical parameters of arbitrarily anisotropic homogenous layered systems,” Phys. Rev. B, Vol. 53, pp. 4265, (1996).

    Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum., Vol. 42, pp.19-22, (1971).

    Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., Vol. 19, pp. 435-441, (1980).
    Tronstad, L., “The investigation of thin surface films on metals by means of reflected polarized light,” Trans. Faraday Soc., Vol. 29, pp. 502-514, (1933).

    Uribe-Patarroyo, N. and Alvarez-Herrero, A. J., “Determination of the molecular tilt profile of a liquid crystal under applied electric field by generalized transmission ellipsometry,“ Opt. Soc. Am. B, Vol. 26, pp.1188, (2009).

    Wohler, H., Fritsch, M., Haas, G. and Mlynski, D. A., “Faster 4 × 4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A, Vol. 5, pp. 1554, (1988).

    Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc., (1984).

    Zhou, Y., He, Z., and Sato, S., “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement, ” Jpn. J. Appl. Phys. 36, 2760-2764, (1997).

    Zhou, Y., He, Z., and Sato, S., “An improved Stokes parameter method for determination of cell thickness and twist angle distributions in twisted nematic liquid crystal devices, ” Jpn. J. Appl. Phys. 37, 2567-2571, (1998).

    許正治,使用外差干涉儀測量光學常數之研究,國立交通大學光電工程研究所碩士論文, (2003).

    鄭諭燦,共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文, (2005).

    池弘偉,全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,(2005)

    無法下載圖示 校內:2016-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE