簡易檢索 / 詳目顯示

研究生: 吳季霖
Wu, Ji-Lin
論文名稱: 隨意式D2D無線網路之省電優化研究
Power Saving Optimization for Ad-hoc D2D Wireless Networks
指導教授: 郭文光
Kuo, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 32
中文關鍵詞: Ad-hoc無線網路資源分配最佳化Lagrangian relaxationLagrangianD2D5G最小化
外文關鍵詞: Ad-hoc D2D networks, resource management, optimization, Lagrangian relaxation, Lagrangian, D2D, 5G, minimize
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5G議題是近幾年大家所重視的焦點之一,本篇論文將探討分散式架構下的D2D(device-to-device)資源管理問題及最省電分析,藉由考慮分散式D2D網路的架構、流量分配及功率控制等因素將問題建構成相映的數學式,在SINR限制、QoS限制、功率上下限等限制下,尋求使得網路具有最佳效益且最省功率的資源分配,而主要使用的求解方法分別有Lagrangian relaxation以及自行設計的演算法。

    5G is becoming the one of the most important topics nowadays. The optimization of the Ad-hoc D2D wireless network resource management and minimizing the power consumption will be discussed and analyzed in this thesis. A precise mathematic model is established after putting the architecture of Ad-hoc D2D wireless networks, flow allocation, routing and power controlling into consideration. To optimize the problems caused by the constrain of SINR, QoS, power upper bound and lower bound limitation, and make it beneficially for allocation and power consumption, the primary solutions in this thesis are Lagrangian Relaxation and self-produced Algorithm.

    目錄 第一章 研究簡介 1 第二章 網路架構與限制 2 2.1 AD-HOC D2D無線網路 2 2.2 數學模型 5 2.3 目標式及限制條件 6 2.3.1 目標式 6 2.3.2 二元變數 6 2.3.3 功率限制 7 2.3.4 訊號與干擾雜訊比限制 7 第三章 數學模型簡化及問題解法 8 3.1 線性化模型 8 3.2 個別演算法介紹與設計 10 3.2.1 Lagrangian Relaxation 10 3.2.2 New Feasible Upper Bound演算法設計 11 3.3 新演算法設計 14 第四章 模擬結果 15 第五章 結論 30 參考文獻 31

    參考文獻
    [1] I. Chlamtac, M. Conti and J. Liu: “Mobile Ad-hoc Networking: Imperatives and Challenges”, Ad Hoc Network Journal, Vol. 1, No 1, Jan(2003).
    [2] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer- to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1215–1228, Aug. 2013.
    [3] Kaiming Shen, Wei Yu, “FPLinQ: A Cooperative Spectrum Sharing Strategy for Device-to-Device Communications,” IEEE International Symposium on Information Theory, Aug. 2017.
    [4] Sanei M, Mahmoodirad A, Niroomand S, Jamalian A, Gelareh S (2015) “Step fixed-charge solid transportation problem: a Lagrangian relaxation heuristic approach.”Comput Appl Math 1–21

    [5] U.C. Kozat, I. Koutsopoulos, L. Tassiulas, “Cross-layer design for power efficiency and QoS provisioning in multi-hop wireless networks,” IEEE Transaction on Wireless Communications, 5 (11) (2006), pp. 3306-3315

    [6] M. L. Fisher, "The Lagrangian relaxation method for solving integer programming problems", Management Science, vol. 27, pp. 1-18, Jan. 1981.

    [7] Yunjun, H., Xiangdong, Y., Dan, W., “Lagrangian relaxation based feasible solution algorithm.”In: 24th Chinese Conference on Control and Decision, 23–25 May 2012, pp. 875–878

    [8] D. Wright, C. Haehling von Lanzenauer, “Solving the fixed charge problem with lagrangian relaxation and cost allocation heuristics
    European Journal of Operational Research,”42 (1989), pp. 304-312

    [9] A.I. Barros “Discrete and Fractional Programming Techniques for Location Models” Kluwer Academic, London, Dordrecht, Boston (1998)

    [10] M.S. Daskin “Network and Discrete Location: Models, Algorithms, and
    Applications” Wiley, New York (1995)

    [11] LV Snyder, SZ-J Max “Fundamentals of supply chain theory” Hoboken, NJ: John Wiley & Sons (2011)

    [12] R.K. Martin “Large scale linear and integer optimization” Kluwer Academic Publishers, Dordrecht (1999)
    [13] 3GPP TS 36.321 R14
    [14] MATLAB_R2018a. Mathworks Inc, 2018
    [15] IBM. (2009). IBM ILOG CPLEX (Version 12). Armonk:New York: IBM.

    下載圖示 校內:2022-05-01公開
    校外:2022-05-01公開
    QR CODE