簡易檢索 / 詳目顯示

研究生: 顏誠皜
Yen, Cheng-Hao
論文名稱: 超高性能纖維混凝土柱軸壓圍束行為研究
Axial Behavior of Confined UHPFRC Columns
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 283
中文關鍵詞: 純軸壓超高性能纖維混凝土柱構件圍束行為
外文關鍵詞: Concentrical loading, UHPFRC, Steel Fiber, Confined column
相關次數: 點閱:170下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著台灣社會的發展,高樓層的建築物已然成為趨勢,但隨著樓層數的增加,柱斷面尺寸亦隨之增大,進而減少建築使用的空間。本研究利用超高性能纖維混凝土(Ultra High Performance Fiber Reinforced Concrete,簡稱UHPFRC)於柱構件中,藉由提高混凝土強度,不但可以有效縮減構件尺寸,且鋼纖維具有橋聯效應,吸收變形的能力,解決脆性的特性,抑制保護層提早剝落的問題,進而增加構件的韌性,強化整體結構物的能力。
    本研究利用新型混凝土,製作2支超高性能混凝土(UHPC)與10支超高性能纖維混凝土(UHPFRC)短柱,施加純軸壓且無側移,針對三種不同橫向鋼筋比(1.56%、1.04%及0.52%)、二種不同繫筋形式(雙向〖135〗^°耐震或雙向〖90〗^°)、二種不同鋼纖維體積比(0.75%及1.5%)與粗骨材之有無,探討鋼纖維於柱構件中的圍束行為,建立圍束效應與鋼纖維試體抗拉強度之關係,評估添加鋼纖維是否可以降低橫向鋼筋比、放大箍筋間距及取代繫筋,亦藉由抑制保護層的特點,觀察主筋是否有提早挫曲的現象,比較雙向135度耐震繫筋是否可以放寬,將彎鉤角度改為雙向90度,以增加現場施工性。
    由試驗結果評估分析,添加0.75%及1.5%體積比鋼纖維,可允許橫向鋼筋間距在d/4下,取代雙向135度耐震繫筋;設計雙向135度耐震繫筋或雙向90度繫筋,可允許橫向鋼筋間距放大至d/2;雙向90度繫筋可取代雙向135度耐震繫筋。藉由分析量化,成功建立鋼纖維試體抗拉強度與圍束鋼筋之關係。

    With the social change in Taiwan, high-rise building has become an important trend. As the floor number increase, the bigger column dimension is necessary. Unfortunately, the reduction of living space was consequent on the large column section. Using Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to replace conventional concrete materials could effectively reduce the cross-section of the column. Steel fibers in matrix not only could absorb deformation energy but also avoid premature concrete spalling. Two Ultra-High Performance Concrete (UHPC) columns and ten Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) columns were fabricated and tested under concentrical loading. The experimental variables include three different lateral reinforcement ratio, two different type of crosstie and two different steel fiber volume ratio. By quantification, assess the feasibility of increase spacing of hoop, the reduction of transverse reinforcement ratio, also the substitution of crosstie. Based on the column failure mode, the columns were observed whether the occurrence of premature buckling of longitudinal bars and the possibility of both ends 90-degree crosstie as a substitute for both ends 135-degree crosstie. Due to the test result, ultra-high performance concrete(UHPC) columns showed extremely brittle behavior. Inclusion of 0.75% or 1.5% by volume of steel fiber allows the columns to replace the crosstie under the spacing of hoop is d/4, and under the biaxial 90-degree or 135-degree crosstie, the hoop of spacing could be allowed to d/2. In particular, The proposed designed formula established the relationship between the amount of confined reinforcement and uniaxial tensile strength.

    摘要 II 誌謝 IX 目錄 XI 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 高性能纖維混凝土 3 2.2 超高性能纖維混凝土 4 2.3 韌性指標 5 2.4 鋼筋混凝土柱 7 2.4.1 柱軸向強度 7 2.4.2 圍束效應 10 2.4.3 鋼筋凝土柱實驗 21 2.5 纖維混凝土柱 26 2.5.1 纖維混凝土柱圍束效應 26 2.5.2纖維混凝土柱實驗 28 2.6 超高性能纖維混凝土細長柱 38 2.7 應力應變曲線 42 2.7.1 混凝土應力應變曲線 42 2.7.2 圍束混凝土應力應變曲線 49 2.7.3 混凝土極限壓應變 53 2.8 鋼筋混凝土柱圍束設計 58 2.9 保護層剝落 65 2.10 破壞平面預測 66 2.11 鋼纖維拉拔行為 68 2.12 縱向主筋應力應變關係 70 第三章 試驗規劃及方法 73 3.1 試驗材料 73 3.1.1 超高性能纖維混凝土 73 3.1.2 鋼筋 79 3.1.3 其他輔助材料 79 3.2 試體規劃 80 3.3 試體設計 81 3.3.1 試體尺寸 83 3.3.2 斷面配置 84 3.3.3 箍筋間距 86 3.3.4 試驗配比 87 3.3.5 加載方式 87 3.4 試驗儀器與設備 88 3.4.1 試驗儀器 88 3.4.2 應變量測系統 90 3.4.3 外部量測系統. 91 3.4.4 混凝土拌合機具 96 3.5 試體製作 96 3.5.1 應變計黏貼步驟 96 3.5.2 應變計黏貼 98 3.5.3 柱試體綁紮 100 3.5.4 灌漿前準備 101 3.5.5 超高性能纖維混凝土拌合 103 3.5.6 試體澆置 104 3.5.7 拆模與養護 105 3.6 試驗流程 106 3.6.1 試驗前置作業 106 3.6.2 試體架設 107 3.6.3 量測系統架設 110 3.7 材料試驗 113 3.7.1 圓柱抗壓試驗 113 3.7.2 混凝土拉力測試 119 3.7.3 鋼筋拉力試驗 127 第四章 試驗結果 129 4.1 柱軸壓試驗行為 129 4.1.1 試體編號:H9TA-F0N 129 4.1.2 試體編號:H9TA-F0 136 4.1.3 試體編號:H9TB-F75 143 4.1.4 試體編號:H9TB-F150 150 4.1.5 試體編號:H9TN-F75 157 4.1.6 試體編號:H9TN-F150 164 4.1.7 試體編號:H18TA-F75 170 4.1.8 試體編號:H18TA-F150 176 4.1.9 試體編號:H18TB-F75 182 4.1.10 試體編號:H18TB-F150 188 4.1.11 試體編號:H18TN-F75 194 4.1.12 試體編號:H18TN-F150 200 4.2 試驗結果整理 207 第五章 綜合討論 209 5.1 柱構件綜合討論 209 5.2 軸向強度 209 5.2.1 最大軸向強度 209 5.2.2 最大軸向強度之預測 215 5.2.3 軸向強度計算結果與比較 216 5.2.4 殘餘軸向強度 221 5.2.5 核心混凝土圍束應力 221 5.3 軸向應變 223 5.3.1 尖峰軸向應變 223 5.3.2 50%尖峰強度之軸向應變 225 5.4 橫向膨脹(Dilatation) 227 5.5 鋼筋應變 229 5.5.1 縱向主筋應變 229 5.5.2 橫向鋼筋 232 5.6 破壞 234 5.6.1 保護層剝落 234 5.6.2 主筋挫屈 236 5.7 韌性行為 237 第六章 分析與設計建議 243 6.1 分析與設計 243 6.2 橫向鋼筋圍束計算 243 6.2.1 有效圍束係數(k_e) 243 6.2.2 有效圍束力 247 6.3 鋼纖維圍束力計算 248 6.3.1 鋼纖維抗拉拔握裹力 248 6.3.2 鋼纖維圍束力 249 6.4 柱圍束計算 250 6.4.1 柱標稱軸向強度 250 6.4.2 柱核心區圍束行為 251 6.4.3 分析公式驗證 253 6.5 設計 254 6.5.1 橫向鋼筋設計 254 6.5.2 柱設計範例 258 6.5.3 柱設計軸向強度 259 第七章 結論 263 參考文獻 269 附錄A 設計算例 277 附錄B 281

    1. 中國土木水利工程學會,混凝土設計規範與解說(土木401-100)
    2. 洪崇展, 曾柏庭, 游文吉, & 黃忠良. (2011). 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程, 26(4), 3-16.
    3. 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
    4. 胡福堯. (2017). 超高性能纖維混凝土細長柱之無偏心與偏心軸壓行為研究. 成功大學土木工程學系學位論文, 1-303
    5. ASTM. (1997). Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading). C-1018
    6. ACI Innovation Task Group 4(2007)Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),American Concrete Institute
    7. ACI Committee, American Concrete Institute, & International Organization for Standardization. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
    8. Aoude, H. (2009). Structural behaviour of steel fibre reinforced concrete members. ProQuest.
    9. Aoude, H., Cook, W. D., & Mitchell, D. (2009). Behavior of columns constructed with fibers and self-consolidating concrete. ACI Structural Journal, 106(3), 349.
    10. Awati, M., & Khadiranaikar, R. B. (2012). Behavior of concentrically loaded high performance concrete tied columns. Engineering Structures, 37, 76-87.
    11. ACI Committee. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). American Concrete Institute.
    12. Bentur, A., & Mindess, S. (2006). Fibre reinforced cementitious composites. CRC Press.
    13. Bhargava, P., Sharma, U. K., & Kaushik, S. K. (2006). Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders. Journal of advanced concrete technology, 4(1), 109-121.
    14. Carreira, D. J., & Chu, K. H. (1985, November). Stress-strain relationship for plain concrete in compression. In Journal Proceedings (Vol. 82, No. 6, pp. 797-804).
    15. Cusson, D., & Paultre, P. (1995). Stress-strain model for confined high-strength concrete. Journal of Structural Engineering, 121(3), 468-477.
    16. CNS1232,Method of test for compressive strength of cylindrical concrete specimens
    17. CNS2111,Method of Tensile test for Metallic Materials
    18. Campione, G. (2002). The effects of fibers on the confinement models for concrete columns. Canadian Journal of Civil Engineering, 29(5), 742-750.
    19. Canadian Standards Association,”Design of Concrete STructures,”CSA A23.3-04,2004
    20. Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of materials in civil engineering, 4(4), 415-429
    21. Elwood, K. J., Maffei, J., Riederer, K. A., & Telleen, K. (2009). Improving column confinement; Part 1: assessment of design provisions. Concrete international, 31(11), 32-39.
    22. Fafitis, A., & Shah, S. P. (1985). Predictions of ultimate behavior of confined columns subjected to large deformations. Journal of the American Concrete Institute, 82(4), 423-433.
    23. Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. Journal of The American Concrete Institute, 82(4), 475-483.
    24. Foster, S. J., Liu, J., & Sheikh, S. A. (1998). Cover spalling in HSC columns loaded in concentric compression. Journal of Structural Engineering, 124(12), 1431-1437.
    25. Foster, S. J. (2001). On behavior of high-strength concrete columns: cover spalling, steel fibers, and ductility. Structural Journal, 98(4), 583-589.
    26. Foster, S. J., & Attard, M. M. (2001). Strength and ductility of fiber-reinforced high-strength concrete columns. Journal of Structural Engineering, 127(1), 28-34.
    27. Ganesan, N., & Murthy, J. R. (1990). Strength and behavior of confined steel fiber reinforced concrete columns. Materials Journal, 87(3), 221-227.
    28. Hsu, L. S., & Hsu, C. T. (1994). Stress-strain behavior of steel-fiber high-strength concrete under compression. Structural Journal, 91(4), 448-457.
    29. Hosinieh, M. M., Aoude, H., Cook, W. D., & Mitchell, D. (2015). Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading. Engineering Structures, 99, 388-401.
    30. Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).

    31. Hung C. C. and El-Tawil, S. (2011), Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions, ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507.
    32. Hung C. C. and Li S. H. (2013), Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites, Composites Part B: Engineering, 45, pp.1441-1447
    33. Hung C. C. , Su Y. F. and Yu K. H. (2013), Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites, Construction and Building Materials, 41, pp. 37-48.
    34. Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
    35. Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    36. Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    37. Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
    38. Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
    39. Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
    40. Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    41. Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
    42. Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    43. Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
    44. Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    45. Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    46. Júnior, H. L., & Giongo, J. S. (2004). Steel-fibre high-strength concrete prisms confined by rectangular ties under concentric compression. Materials and structures, 37(10), 689-697.

    47. Legeron, F., & Paultre, P. (2003). Uniaxial confinement model for normal-and high-strength concrete columns. Journal of Structural Engineering, 129(2), 241-252.
    48. Mander, J. B. (1983). Seismic design of bridge piers.
    49. Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
    50. Mansur, M. A., Chin, M. S., & Wee, T. H. (1999). Stress-strain relationship of high-strength fiber concrete in compression. Journal of materials in civil engineering, 11(1), 21-29.
    51. Nataraja, M. C., Dhang, N., & Gupta, A. P. (1999). Stress–strain curves for steel-fiber reinforced concrete under compression. Cement and concrete composites, 21(5-6), 383-390.
    52. Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research, 3(5), 583-599.
    53. Park, R., & Paulay, T. (1975). Ductile reinforced concrete frames-some comments on the special provisions for seismic design of ACI 318-71 and on capacity design. Bulletin of the New Zealand Society for Earthquake Engineering, 8(1), 70-90.
    54. Paultre, P., & Légeron, F. (2008). Confinement reinforcement design for reinforced concrete columns. Journal of structural engineering, 134(5), 738-749.
    55. Paultre, P., Eid, R., Langlois, Y., & Lévesque, Y. (2010). Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression. Journal of Structural Engineering, 136(10), 1225-1235.

    56. Qi, J., Ma, Z. J., & Wang, J. (2016). Shear strength of UHPFRC beams: Mesoscale fiber-matrix discrete model. Journal of Structural Engineering, 143(4), 04016209.
    57. Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station..
    58. Razvi, S., & Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289.
    59. Resplendino, J., & Toulemonde, F. (2013). Designing and Building with UHPFRC. John Wiley & Sons.
    60. Sheikh, S. A., & Uzumeri, S. M. (1980). Strength and ductility of tied concrete columns. Journal of the structural division, 106(ASCE 15388 Proceeding).
    61. Scott, B. D., Park, R., & Priestley, M. J. N. (1982, January). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. In Journal Proceedings (Vol. 79, No. 1, pp. 13-27).
    62. Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural engineering, 118(6), 1590-1607.
    63. Saatcioglu, M., & Razvi, S. R. (1998). High-strength concrete columns with square sections under concentric compression. Journal of Structural Engineering, 124(12), 1438-1447.
    64. Sharma, U. K., & Bhargava, P. (2005). Behavior of confined high strength concrete columns under axial compression. Journal of Advanced Concrete Technology, 3(2), 267-281.

    65. Sharma, U. K., Bhargava, P., & Sheikh, S. A. (2007). Tie-confined fibre-reinforced high-strength concrete short columns. Magazine of Concrete Research, 59(10), 757-769.
    66. Shin, H. O., Yoon, Y. S., Lee, S. H., Cook, W. D., & Mitchell, D. (2014). Effect of steel fibers on the performance of ultrahigh-strength concrete columns. Journal of materials in civil engineering, 27(4), 04014142.
    67. Shin, H. O., Yoon, Y. S., Cook, W. D., & Mitchell, D. (2016). Enhancing the confinement of ultra-high-strength concrete columns using headed crossties. Engineering Structures, 127, 86-100.
    68. Wille, K., & Naaman, A. E. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI Materials Journal, 109(4).
    69. Wille, K. (2012, September). Concrete strength dependent pull-out behavior of deformed steel fibers. In Proceedings of the 8th International RILEM Symposium on Fibre Reinforced Concrete, Guimaraes, Portugal.
    70. Wu, Y. F., & Cao, Y. (2017). Energy Balance Method for Modeling Ultimate Strain of Confined Concrete. ACI Structural Journal, 114(2).
    71. Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE