簡易檢索 / 詳目顯示

研究生: 張立甫
Chang, Li-Fu
論文名稱: 錳酸鋰之結構、缺陷、電化學分析及其在複合層狀結構正極之重要性
Role of Li2MnO3 in Li-rich Composite Cathode through Structural, Defect, and Electrochemical Analyses
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 63
中文關鍵詞: 鋰離子電池富鋰正極材料臨場X光繞射鎢摻雜衰退機制
外文關鍵詞: Lithium-ion batteries, lithium-rich cathode material, in situ XRD, tungsten doping, degradation mechanism
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 富鋰層狀複合正極xLi2MnO3‧(1-x)Li(Ni1/3Mn1/3Co1/3)O2擁有非常高電容量(>250 mAh/g)與獨特的氧離子氧化還原而備受矚目,其氧離子氧化還原反應是由複合正極中之Li2MnO3觸發,但富鋰層狀複合正極在實際應用上仍受限於氧氣釋放、低循環電容量維持率、較差的高速充放電表現,這些問題主要可歸咎於富鋰正極在循環後發生的不可逆相變化。本研究旨在了解Li2MnO3第一次充放電的特殊電化學反應與後續相變化的關聯,並藉由臨場X光繞射分析研究氧氣釋放行為與後續造成電化學表現衰退的相變化之間的關聯性。
    由缺陷化學的觀點可知氧氣釋放後形成的氧空缺會影響結構穩定性,本研究以高價數鎢離子摻雜來提升Li2MnO3之導電率、電化學表現與結構穩定性,藉由電荷補償效應摻雜6+價鎢離子,能使部分錳離子由4+還原為3+,經鎢摻雜後Li2MnO3之導電率能提高兩個數量級,電容量也由181 mAh/g提升至217 mAh/g。TEM結果顯示第一圈充放電後,表面區域結構由原先層狀結構變成層狀與尖晶石之混和結構;20圈循環後相轉變成Mn3O4-type尖晶石結構。S/TEM HAADF影像觀察到錳離子遷移到鄰近的鋰離子層位置。臨場X光繞射分析觀察到由氧空缺引起之局部晶格坍塌現象。
    綜合上述結果來解釋Li2MnO3的衰退機制,第一次充電氧氣釋放形成的氧空缺引起局部晶格坍塌,在晶格坍塌狀態下錳離子會遷移到鄰近的鋰離子層位置並阻礙後續鋰離子遷入,造成不可逆地結構變化,此不可逆地結構相變化會逐漸由表面區域擴展至內部,造成嚴重的電化學表現劣化。藉由調整電位視窗來抑制氧空缺生成,富鋰層狀複合正極第一圈庫倫效率能由77.5%提高至89.2%,50圈電容量維持率由64.9%提高至82.2%。同時藉由鎢摻雜能使富鋰層狀正極第一次放電電容量由256 mAh/g提高到272 mAh/g,200圈1C充放電測試下電容量維持率能由32.9%提高至59.5%,這些結果可歸功於鎢摻雜對結構穩定性的改善,使更多鋰離子能進行可逆式嵌入回Li2MnO3正極。

    Li-rich layered composite oxide xLi2MnO3‧(1-x)Li(Ni1/3Mn1/3Co1/3)O2 has received much attention for its astounding high capacity (>250 mAh/g) among several cathode materials due to the participation of oxygen anionic redox. It is widely recognized that Li2MnO3 integrated is essential to trigger the anionic redox reactions. However, the practical application of Li-rich layered oxide hindered by O2 evolution, low cyclic retention, and poor rate performance. Irreversible phase transformation of Li-rich layered oxide during cycling is responsible for these issues. In this study, the main objective is to examine Li2MnO3 based on its electrochemical behavior, defect chemistry with doping effect, and phase transformation after charging. In situ X-ray diffraction and scanning/transmission electron microscopy (S/TEM) were also utilized for analyzing and understanding the correlation between O2 evolution from anionic redox and the deleterious electrochemical performance due to irreversible phase transformation.
    In the defect prospective, oxygen vacancies formed from O2 evolution impact the structural stability. Tungsten was chosen as dopant to improve electrical conductivity, electrochemical performance, and structure stability of Li2MnO3 as well as Li-rich composite cathode. Li2Mn1-xWxO3 (x=0, 0.03, 0.045, 0.06, 0.10) cathode materials were sucessfully synthesized by sol-gel method. The increace of electrical conductivity of Li2Mn1-xWxO3 (x>0.045) has been improved up to 2 orders of magnitude due to presence of Mn3+ charge-compensated by W6+. Charge-transfer resistance in EIS is effectively suppressed due to the enhanced electrical conductivity and Li diffusion. The charge-discharge capacities of Li2MnO3 are also enhanced from 181 mAh/g to 217 mAh/g by tungsten doping. TEM results showed that the structure at surface region begins to phase transform to mixed layered and spinel-like structure after first cycle. The structure after 20 cycles eventually phase transformed to Mn3O4-type spinel. Mn migration was determined by S/TEM HAADF image. Vacancy-induced local lattice collapse was indicated by in situ Xray diffraction.
    Based on these results, it is realized that the degradation of Li2MnO3 begins from oxygen vacancy formation by O2 evolution during first charge. The oxygen vacancy-induced lattice collapse enables manganese ions to migrate into adjacent lithium layers. The Mn migration hinder the lithium-ion intercalation and cause irreversible structural and chemical evolution. The deleterious structural transformation gradually expands from surface into bulk, causing the degradation of electrochemical performance. The reduction of upper cut-off voltage was adopted to suppress the formation of oxygen vacancies in Li-rich composite layered oxide. As a result, the improvement on first coulombic efficiency is from 77.5% to 89.2% and cyclic retention from 64.9% to 82.2% during 50 cycles. In addition, the first discharge capacity of 0.5Li2MnO3‧0.5Li(Ni1/3Co1/3Mn1/3)O2 through tungsten doping increase from 256 mAh/g to 272 mAh/g. The cyclic retention after 200 cycles increases from 32.9% of pristine to 59.5% at 1C, which is attributed to better structure stability caused by tungsten doping for more lithium ions intercalation.

    Chapter 1: Introduction 1 Chapter 2: Literature Review 4 2.1 Basic Concepts of Lithium-ion Rechargeable Batteries 4 2.2 Overview of Common Cathode Materials for Lithium-ions Batteries 6 2.2.1 Commercial Cathode Materials 6 2.2.2 Advanced Layered Cathode Materials for Lithium-ions Batteries 8 2.3 Li-rich Li1+xM1-xO2 Layered Oxides 11 2.3.1 Origin and Basic Design of Li-rich Composite Layered Oxides 11 2.3.2 Specific Electrochemical Performance and Capacity Fading of Li-rich Oxides Cathode 13 2.3.3 Challenge on Li-rich Composite Layered Oxides 14 Chapter 3: Motivation and Objective 17 Chapter 4: Experiment 19 4.1 Synthesis 19 4.2 X-ray Diffraction 19 4.3 X-ray Photoemission Spectroscopy(XPS) Analysis 20 4.4 DC Conductivity Measurement 20 4.5 Scanning/Transmission Electron Microscopy 20 4.6 In-situ X-ray Diffraction 20 4.7 Galvanostatic Charge-discharge Test 21 4.8 Electrochemical Impedance Spectroscopy 21 Chapter 5: The Material Characterization and Electrochemical Performance of Li2MnO3 Cathode 22 5.1 Structural Characterization of Li2MnO3 22 5.2 The Doping Effect of Tungsten on Electrochemistry 26 5.2.1 Valence State and Electrical Conductivity 26 5.2.2 Electrochemical Impedance Spectroscopy Measurement 29 5.2.3 Galvanostatic Charge-discharge Test 33 Chapter 6: Structural Evolution and Electrochemistry of Li2MnO3 after Cycling 36 6.1 Structural Change of Li2MnO3 after Cycling 36 6.2 In Situ XRD Study for Lattice Distortion Determination 41 6.3 Influence on Electrochemical Performance by Adjusting Potential Window 46 Chapter 7: Improvement on Electrochemical Performance of Li-rich 0.5Li2MnO3‧0.5Li(Ni1/3Mn1/3Co1/3)O2 Cathode 50 7.1 Improvement of Electrochemical Performance by Adjusting Potential Window 50 7.2 Improvement of Tungsten Doping on Electrochemical Performance of Li-rich Cathode 53 Chapter 8: Conclusions 56 Chapter 9: References 58

    1 Wolde-Rufael, Y. Electricity consumption and economic growth: a time series experience for 17 African countries. Energy Policy 34, 1106-1114 (2006).
    2 Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energ Environ Sci 5, 7854-7863 (2012).
    3 Ros, J., Nagelhout, D. & Montfoort, J. New environmental policy for system innovation: Casus alternatives for fossil motor fuels. Applied Energy 86, 243-250 (2009).
    4 Raslavičius, L. et al. Electric vehicles challenges and opportunities: Lithuanian review. Renewable and Sustainable Energy Reviews 42, 786-800 (2015).
    5 MELAINA, M. & WEBSTER, K. Role of Fuel Carbon intensity in Achieving 2050 Greenhouse Gas Reduction Goals within the Light-Duty Vehicle Sector. Environmental Science & Technology 45, 3865-3871 (2011).
    6 Lutsey, N. & Sperling, D. Regulatory adaptation: Accommodating electric vehicles in a petroleum world. Energy Policy 45, 308-316 (2012).
    7 Åhman, M. Government policy and the development of electric vehicles in Japan. Energy Policy 34, 433-443 (2006).
    8 Diamond, D. The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy Policy 37, 972-983 (2009).
    9 Zhang, X., Xie, J., Rao, R. & Liang, Y. Policy incentives for the adoption of electric vehicles across countries. Sustainability 6, 8056-8078 (2014).
    10 Silvia, C. & Krause, R. M. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model. Energy Policy 96, 105-118 (2016).
    11 Palmer, K., Tate, J. E., Wadud, Z. & Nellthorp, J. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy 209, 108-119 (2018).
    12 Soltani-Sobh, A., Heaslip, K., Stevanovic, A., Bosworth, R. & Radivojevic, D. Analysis of the electric vehicles adoption over the United States. Transportation Research Procedia 22, 203-212 (2017).
    13 Gnann, T. et al. What drives the market for plug-in electric vehicles-A review of international PEV market diffusion models. Renewable and Sustainable Energy Reviews 93, 158-164 (2018).
    14 Brown, S., Pyke, D. & Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energy Policy 38, 3797-3806 (2010).
    15 Mahmoud, M., Garnett, R., Ferguson, M. & Kanaroglou, P. Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews 62, 673-684 (2016).
    16 Ding, Y., Cano, Z. P., Yu, A., Lu, J. & Chen, Z. Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews 2, 1-28 (2019).
    17 Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater Today 18, 252-264 (2015).
    18 Sun, Y. K. High-Capacity Layered Cathodes for Next-Generation Electric Vehicles. Acs Energy Lett 4, 1042-1044 (2019).
    19 Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: A Cobalt‐Free Alternative to NMC and NCA Cathodes for Lithium‐Ion Batteries. Adv Mater 32, 2002718 (2020).
    20 Harlow, J. E. et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J Electrochem Soc 166, A3031 (2019).
    21 Thackeray, M. M. et al. Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17, 3112-3125 (2007).
    22 Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126-1127 (1976).
    23 Nazri, G.-A. & Pistoia, G. Lithium batteries: science and technology. (Springer Science & Business Media, 2008).
    24 Ohzuku, T. & Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174, 449-456 (2007).
    25 Fauteux, D. & Koksbang, R. Rechargeable lithium battery anodes: alternatives to metallic lithium. Journal of applied electrochemistry 23, 1-10 (1993).
    26 Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater Res Bull 15, 783-789 (1980).
    27 Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144, 1188 (1997).
    28 Reimers, J. N. & Dahn, J. Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139, 2091 (1992).
    29 Delmas, C., Braconnier, J.-J. & Hagenmuller, P. A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Mater Res Bull 17, 117-123 (1982).
    30 Wang, Y. & Cao, G. Developments in nanostructured cathode materials for high‐performance lithium‐ion batteries. Adv Mater 20, 2251-2269 (2008).
    31 Delmas, C., Saadoune, I. & Rougier, A. The cycling properties of the LixNi1− yCoyO2 electrode. J Power Sources 44, 595-602 (1993).
    32 Chebiam, R., Prado, F. & Manthiram, A. Structural Instability of Delithiated Li1− x Ni1− yCo yO2 Cathodes. J Electrochem Soc 148, A49 (2001).
    33 Rossen, E., Jones, C. & Dahn, J. Structure and electrochemistry of LixMnyNi1− yO2. Solid State Ionics 57, 311-318 (1992).
    34 Yoshio, M., Noguchi, H., Itoh, J.-i., Okada, M. & Mouri, T. Preparation and properties of LiCoyMnxNi1− x− yO2 as a cathode for lithium ion batteries. J Power Sources 90, 176-181 (2000).
    35 Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30, 642-643 (2001).
    36 Ngala, J. K. et al. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4 Mn0.4 Co0.2 O2 compound. J Mater Chem 14, 214-220 (2004).
    37 Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233, 121-130 (2013).
    38 Rossouw, M., Liles, D. & Thackeray, M. Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2. Journal of Solid State Chemistry France 104, 464-466 (1993).
    39 Ammundsen, B. & Paulsen, J. Novel lithium‐ion cathode materials based on layered manganese oxides. Adv Mater 13, 943-956 (2001).
    40 Lu, Z., MacNeil, D. & Dahn, J. Layered cathode materials Li [NixLi(1/3− 2x/3) Mn(2/3− x/3)]O 2 for lithium-ion batteries. Electrochem Solid St 4, A191 (2001).
    41 Yu, H. & Zhou, H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. The journal of physical chemistry letters 4, 1268-1280 (2013).
    42 Yu, X. et al. Understanding the rate capability of high‐energy‐density Li‐rich layered Li1. 2Ni0. 15Co0. 1Mn0. 55O2 cathode materials. Adv Energy Mater 4, 1300950 (2014).
    43 Shi, J.-L. et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. Acs Appl Mater Inter 8, 20138-20146 (2016).
    44 Ding, F. et al. Surface heterostructure induced by PrPO4 modification in Li1. 2 [Mn0. 54Ni0. 13Co0. 13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. Acs Appl Mater Inter 9, 27936-27945 (2017).
    45 Yu, H. et al. Direct atomic‐resolution observation of two phases in the Li1. 2Mn0. 567Ni0. 166Co0. 067O2 cathode material for lithium‐ion batteries. Angewandte Chemie International Edition 52, 5969-5973 (2013).
    46 Boulineau, A. et al. Evolutions of Li1. 2Mn0. 61Ni0. 18Mg0. 01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem Mater 24, 3558-3566 (2012).
    47 Bareno, J. et al. Long-range and local structure in the layered oxide Li1. 2Co0. 4Mn0. 4O2. Chem Mater 23, 2039-2050 (2011).
    48 Hu, S. et al. Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochemical Energy Reviews, 1-35 (2019).
    49 Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3, 6709-6732 (2015).
    50 Saint, J. A., Doeff, M. M. & Reed, J. Synthesis and electrochemistry of Li3MnO4: Mn in the+ 5 oxidation state. J Power Sources 172, 189-197 (2007).
    51 Oishi, M. et al. Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J Mater Chem A 4, 9293-9302 (2016).
    52 Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem 8, 692 (2016).
    53 Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun 8, 1-12 (2017).
    54 Li, X. et al. Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials. Adv Mater 30, 1705197 (2018).
    55 Okamoto, Y. Ambivalent effect of oxygen vacancies on Li2MnO3: a First-Principles study. J Electrochem Soc 159, A152 (2011).
    56 Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0. 2Li0. 2Mn0. 6]O2. J Am Chem Soc 128, 8694-8698 (2006).
    57 Strehle, B. et al. The role of oxygen release from Li-and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J Electrochem Soc 164, A400 (2017).
    58 Castel, E., Berg, E. J., El Kazzi, M., Novák, P. & Villevieille, C. Differential Electrochemical Mass Spectrometry Study of the Interface of x Li2MnO3·(1–x) LiMO2 (M= Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries. Chem Mater 26, 5051-5057 (2014).
    59 Yabuuchi, N., Yoshii, K., Myung, S.-T., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3− LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133, 4404-4419 (2011).
    60 Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat Mater 18, 256-265 (2019).
    61 Xie, Y., Saubanère, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energ Environ Sci 10, 266-274 (2017).
    62 Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energ Environ Sci 4, 2223-2233 (2011).
    63 Boulineau, A., Simonin, L., Colin, J.-F., Bourbon, C. & Patoux, S. First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13, 3857-3863 (2013).
    64 Grey, C. P., Yoon, W.-S., Reed, J. & Ceder, G. Electrochemical Activity of Li in the Transition-Metal Sites of O3 Li[Li (1− 2x)/3Mn (2− x)/3Ni x]O2. Electrochem Solid St 7, A290 (2004).
    65 Oh, P., Ko, M., Myeong, S., Kim, Y. & Cho, J. A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for High‐Performance 0.4 Li2MnO3–0.6 LiNi1/3Co1/3Mn1/3O2 Cathode Materials. Adv Energy Mater 4, 1400631 (2014).
    66 Xiao, R., Li, H. & Chen, L. Density functional investigation on Li2MnO3. Chem Mater 24, 4242-4251 (2012).
    67 Bak, S.-M. et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0. 8Co0. 15Al0. 05O2 cathode materials. Chem Mater 25, 337-351 (2013).
    68 Yang, X. et al. The contradiction between the half-cell and full-battery evaluations on the tungsten-coating LiNi0. 5Co0. 2Mn0. 3O2 cathode. Electrochim Acta 180, 604-609 (2015).
    69 Park, G.-T., Ryu, H.-H., Park, N.-Y., Yoon, C. S. & Sun, Y.-K. Tungsten doping for stabilization of Li[Ni0. 90Co0. 05Mn0. 05]O2 cathode for Li-ion battery at high voltage. J Power Sources 442, 227242 (2019).
    70 Li, W. et al. Regulating the Grain Orientation and Surface Structure of Primary Particles through Tungsten Modification to Comprehensively Enhance the Performance of Nickel-Rich Cathode Materials. Acs Appl Mater Inter 12, 47513-47525 (2020).
    71 Gillot, B., Buguet, S., Kester, E., Baubet, C. & Tailhades, P. Cation valencies and distribution in the spinels CoxCuyMnzFeuO4+ δ (δ≥ 0) thin films studied by X-ray photoelectron spectroscopy. Thin Solid Films 357, 223-231 (1999).
    72 Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochemical Methods 2, 580-632 (2001).
    73 Zhao, W. et al. Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. J Power Sources 330, 37-44 (2016).
    74 Denis, Y., Yanagida, K., Kato, Y. & Nakamura, H. Electrochemical activities in Li2MnO3. J Electrochem Soc 156, A417 (2009).
    75 Li, J., Shunmugasundaram, R., Doig, R. & Dahn, J. In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem Mater 28, 162-171 (2016).
    76 Koga, H. et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1. 20Mn0. 54Co0. 13Ni0. 13O2. J Power Sources 236, 250-258 (2013).
    77 Chatzichristodoulou, C., Norby, P., Hendriksen, P. V. & Mogensen, M. B. Size of oxide vacancies in fluorite and perovskite structured oxides. Journal of Electroceramics 34, 100-107 (2015).
    78 Croy, J. R. et al. First-charge instabilities of layered-layered lithium-ion-battery materials. Phys Chem Chem Phys 17, 24382-24391 (2015).
    79 Gu, M. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Acs Nano 7, 760-767 (2013).

    無法下載圖示 校內:2026-10-08公開
    校外:2026-10-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE