| 研究生: |
蔡政良 Tsai, Jeng-Liang |
|---|---|
| 論文名稱: |
合併c-Met 驅動子調控的溶瘤腺病毒與rapamycin 協同抑制非小細胞肺癌 Synergistic antitumor effect of c-Met-dependent oncolytic adenovirus combined with rapamycin in non-small cell lung cancer |
| 指導教授: |
蕭璦莉
Shiau, Al-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 溶瘤腺病毒 、非小細胞肺癌 |
| 外文關鍵詞: | oncolytic adenovirus, non-small cell lung cancer |
| 相關次數: | 點閱:115 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌為高致死以及高好發率疾病。在所有肺癌病例當中,約80%為
非小細胞肺癌,其餘則為小細胞肺癌。與正常細胞相同,肺癌細胞也會表現受體酪氨酸激 (receptor tyrosine kinase,RTK),不同的是,肺癌細胞上的RTK 常因為大量表現或突變而過度活化,使得癌細胞生長不受正常調控。c-Met 是一種RTK,當不正常受到肝細胞生長因子刺激或本身過度活化使得細胞產生變異或腫瘤特性。c-Met 也參與許多種癌細胞包括肺癌細胞的生長、侵略以及轉移。我們使用由c-Met 啟動子調控複製的E1B55KD 基因剔除溶瘤腺病毒治療肺癌。結果顯示,Ad.What可選擇性地在c-Met 啟動子活性較強的肺癌細胞中複製,進而毒殺肺癌細胞,對於正常細胞則無太大影響。過去研究顯示,合併化療藥物及溶瘤腺病毒能增強毒殺腫瘤的效果。rapamycin 為rapamycin 的哺乳動物目標物 (Mammalian Target of Rapamycin,mTOR) 絲氨酸/羥丁胺酸激高度專一抑制物,已經在許多癌症治療上得到一定的效果。因此我們合併rapamycin 與Ad.What 共同作用,並進一步發現rapamycin 與Ad.What在毒殺肺癌細胞上能達到所謂的“協同作用”。接著我們發現rapamycin增加肺癌細胞上克沙奇病毒及腺病毒受體以及αV 細胞表面黏著分子表現。另一方面,Ad.What 降低肺癌細胞中mTOR 下游因子p70S6K 以及誘發細胞產生細胞自噬作用。由以上結果顯示,以c-Met 啟動子驅動的溶瘤腺病毒合併rapamycin 有潛力作為有效且安全的肺癌治療選擇。
Lung cancer is a deadly disease with high mortality and morbidity. Approximately 85% of these cases are non-small cell lung cancer (NSCLC) with the rest being small cell lung cancer (SCLC). Like normal cells, lung cancer cells express receptor tyrosine kinases. The difference is that these receptors may be overexpressed or mutated leading to increased activation. c-Met is a receptor tyrosine kinase whose activation by hepatocyte growth factor can lead to transformation and tumorigenicity. It is also implicated in growth, invasion, and metastasis of various tumors, including lung cancer. Here, we used an E1B 55KD-deleted replication-selective oncolytic adenovirus (Ad.What) driven by the c-Met promoter for the treatment of
lung cancer. Ad.What replicated and hence lysed lung cancer cells with c-Met overexpression, whereas it did not induce noticeable cytopathic effects in normal cells. Previous studies showed that combination of oncolytic adenovirus with chemotherapeutic drugs could augment the
antitumor efficacy. Rapamycin, a highly selective inhibitor of mammalian target of rapamycin (mTOR) serine/threonine kinase, has shown promise in
clinical studies for treating different types of cancer. Accordingly, we combined rapamycin with Ad.What and found that they synergized in inducing cytopathic effects in lung cancer cells. Rapamycin enhanced coxsackievirus and adenovirus receptor (CAR) and αV integrin expression
on cancer cells. Ad.What reduced total p70S6K and phosphorylated p70S6K, the downstream effector of mTOR, and induced autophagy. We concluded that the combination of c-Met promoter-driven oncolytic adenovirus with rapamycin has the potential to be an effective strategy for lung cancer treatment.
Abou El Hassan, M. A., van der Meulen-Muileman, I., Abbas, S., and Kruyt, F. A. (2004). Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles
necrosis-like programmed cell death. J Virol 78, 12243-12251.
Abounader, R., Reznik, T., Colantuoni, C., Martinez-Murillo, F., Rosen, E. M., and Laterra, J. (2004). Regulation of c-Met-dependent gene expression by PTEN. Oncogene 23, 9173-9182.
Albright, C., and Garst, J. (2007). Vaccine therapy in non-small-cell lung cancer. Curr Oncol Rep 9, 241-246.
Alonso, M. M., Gomez-Manzano, C., Jiang, H., Bekele, N. B., Piao, Y., Yung, W. K., Alemany, R., and Fueyo, J. (2007). Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Ther 14, 756-761.
Alonso, M. M., Jiang, H., Yokoyama, T., Xu, J., Bekele, N. B., Lang, F. F., Kondo, S., Gomez-Manzano, C., and Fueyo, J. (2008). δ-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16, 487-493. Ambriovic-Ristov, A., Gabrilovac, J., Cimbora-Zovko, T., and Osmak, M. (2004). Increased adenoviral transduction efficacy in human laryngeal
carcinoma cells resistant to cisplatin is associated with increased expression of integrin αvβ3 and coxsackie adenovirus receptor. Int J Cancer 110, 660-667.
Baggstrom, M. Q., Stinchcombe, T. E., Fried, D. B., Poole, C., Hensing, T. A., and Socinski, M. A. (2007). Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis.
J Thorac Oncol 2, 845-853.
Barker, D. D., and Berk, A. J. (1987). Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107-121.
Bencardino, K., Manzoni, M., Delfanti, S., Riccardi, A., Danova, M., and Corazza, G. R. (2007). Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer: results and
open issues. Intern Emerg Med 2, 3-12.
Benvenuti, S., and Comoglio, P. M. (2007). The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 213, 316-325.
Berthou, S., Aebersold, D. M., Schmidt, L. S., Stroka, D., Heigl, C., Streit, B., Stalder, D., Gruber, G., Liang, C., Howlett, A. R., et al. (2004). The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern
toward different receptor mutated variants. Oncogene 23, 5387-5393.
Boffa, D. J., Luan, F., Thomas, D., Yang, H., Sharma, V. K., Lagman, M., and Suthanthiran, M. (2004). Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin Cancer Res 10, 293-300.
Brozovic, A., Majhen, D., Roje, V., Mikac, N., Jakopec, S., Fritz, G., Osmak, M., and Ambriovic-Ristov, A. (2008). αvβ3 Integrin-mediated drug resistance in human laryngeal carcinoma cells is caused by glutathione-dependent elimination of drug-induced reactive oxidative
species. Mol Pharmacol 74, 298-306.
Buck, E., Eyzaguirre, A., Brown, E., Petti, F., McCormack, S., Haley, J. D., Iwata, K. K., Gibson, N. W., and Griffin, G. (2006). Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib
in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 5, 2676-2684.
Chen, J. J., Peck, K., Hong, T. M., Yang, S. C., Sher, Y. P., Shih, J. Y., Wu, R., Cheng, J. L., Roffler, S. R., Wu, C. W., and Yang, P. C. (2001). Global analysis of gene expression in invasion by a lung cancer model. Cancer
Res 61, 5223-5230.
Cheng, Y. W., Chiou, H. L., Sheu, G. T., Hsieh, L. L., Chen, J. T., Chen, C. Y., Su, J. M., and Lee, H. (2001). The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women.
Cancer Res 61, 2799-2803.
Christensen, J. G., Schreck, R., Burrows, J., Kuruganti, P., Chan, E., Le, P., Chen, J., Wang, X., Ruslim, L., Blake, R., et al. (2003). A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent
phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63, 7345-7355.
Crompton, A. M., and Kirn, D. H. (2007). From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 7, 133-139.
Davies, A. M., Lara, P. N., Jr., Mack, P. C., and Gandara, D. R. (2007). Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13, s4647-4651.
Davydova, J., Le, L. P., Gavrikova, T., Wang, M., Krasnykh, V., and Yamamoto, M. (2004). Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma
treatment. Cancer Res 64, 4319-4327.
Edwards, S. J., Dix, B. R., Myers, C. J., Dobson-Le, D., Huschtscha, L., Hibma, M., Royds, J., and Braithwaite, A. W. (2002). Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14(ARF) tumor suppressor genes. J Virol 76, 12483-12490.
Folgiero, V., Avetrani, P., Bon, G., Di Carlo, S. E., Fabi, A., Nistico, C., Vici, P., Melucci, E., Buglioni, S., Perracchio, L., et al. (2008). Induction of ErbB-3 expression by α6β4 integrin contributes to tamoxifen resistance in ERβ1-negative breast carcinomas. PLoS ONE 3, e1592.
Gentile, A., Trusolino, L., and Comoglio, P. M. (2008). The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27, 85-94.
Giuliani, L., Jaxmar, T., Casadio, C., Gariglio, M., Manna, A., D'Antonio, D., Syrjanen, K., Favalli, C., and Ciotti, M. (2007). Detection of oncogenic viruses SV40, BKV, JCV, HCMV, HPV and p53 codon 72 polymorphism in lung carcinoma. Lung Cancer 57, 273-281.
Hartford, C. M., and Ratain, M. J. (2007). Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82, 381-388.
He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998). A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95, 2509-2514.
Hecht, S. S. (2008). Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol 21, 160-171.
Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639-645.
Homicsko, K., Lukashev, A., and Iggo, R. D. (2005). RAD001 (everolimus) improves the efficacy of replicating adenoviruses that target colon cancer. Cancer Res 65, 6882-6890.
Ito, H., Aoki, H., Kuhnel, F., Kondo, Y., Kubicka, S., Wirth, T., Iwado, E., Iwamaru, A., Fujiwara, K., Hess, K. R., et al. (2006). Autophagic cell death of malignant glioma cells induced by a conditionally replicating
adenovirus. J Natl Cancer Inst 98, 625-636.
Jiang, H., White, E. J., Gomez-Manzano, C., and Fueyo, J. (2008). Adenovirus's last trick: you say lysis, we say autophagy. Autophagy 4, 118-120.
Kitazono, M., Goldsmith, M. E., Aikou, T., Bates, S., and Fojo, T. (2001). Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res 61, 6328-6330.
Kitazono, M., Rao, V. K., Robey, R., Aikou, T., Bates, S., Fojo, T., and Goldsmith, M. E. (2002). Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood 99, 2248-2251.
Ko, D., Hawkins, L., and Yu, D. C. (2005). Development of transcriptionally regulated oncolytic adenoviruses. Oncogene 24, 7763-7774.
Lee, J. M., Mao, J. T., Krysan, K., and Dubinett, S. M. (2007). Significance of cyclooxygenase-2 in prognosis, targeted therapy and chemoprevention of NSCLC. Future Oncol 3, 149-153.
Lesko, E., and Majka, M. (2008). The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci 13, 1271-1280.
Li, Y., Pong, R. C., Bergelson, J. M., Hall, M. C., Sagalowsky, A. I., Tseng, C. P., Wang, Z., and Hsieh, J. T. (1999). Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 59, 325-330.
Liu, L., Li, F., Cardelli, J. A., Martin, K. A., Blenis, J., and Huang, S. (2006). Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25, 7029-7040.
Mathis, J. M., Stoff-Khalili, M. A., and Curiel, D. T. (2005). Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 24, 7775-7791.
Migliore, C., and Giordano, S. (2008). Molecular cancer therapy: can our expectation be MET? Eur J Cancer 44, 641-651.
Morotti, A., Mila, S., Accornero, P., Tagliabue, E., and Ponzetto, C. (2002). K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21, 4885-4893.
Morris, M. R., Gentle, D., Abdulrahman, M., Maina, E. N., Gupta, K., Banks, R. E., Wiesener, M. S., Kishida, T., Yao, M., Teh, B., et al. (2005). Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear
cell renal cell carcinoma. Cancer Res 65, 4598-4606.
Nemerow, G. R. (2000). Cell receptors involved in adenovirus entry. Virology 274, 1-4.
O'Shea, C., Klupsch, K., Choi, S., Bagus, B., Soria, C., Shen, J., McCormick, F., and Stokoe, D. (2005). Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. Embo J 24, 1211-1221.
O'Shea, C. C., Johnson, L., Bagus, B., Choi, S., Nicholas, C., Shen, A., Boyle, L., Pandey, K., Soria, C., Kunich, J., et al. (2004). Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6, 611-623.
Palmarini, M., and Fan, H. (2001). Retrovirus-induced ovine pulmonary adenocarcinoma, an animal model for lung cancer. J Natl Cancer Inst 93, 1603-1614.
Parato, K. A., Senger, D., Forsyth, P. A., and Bell, J. C. (2005). Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 5, 965-976.
Peruzzi, B., and Bottaro, D. P. (2006). Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12, 3657-3660.
Pourel, N., Santelmo, N., Naafa, N., Serre, A., Hilgers, W., Mineur, L., Molinari, N., and Reboul, F. (2008). Concurrent cisplatin/etoposide plus 3D-conformal radiotherapy followed by surgery for stage IIB (superior
sulcus T3N0)/III non-small cell lung cancer yields a high rate of pathological complete response. Eur J Cardiothorac Surg 33, 829-836.
Rogulski, K. R., Freytag, S. O., Zhang, K., Gilbert, J. D., Paielli, D. L., Kim, J. H., Heise, C. C., and Kirn, D. H. (2000). In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by
radiotherapy. Cancer Res 60, 1193-1196.
Rothmann, T., Hengstermann, A., Whitaker, N. J., Scheffner, M., and zur Hausen, H. (1998). Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 72,
9470-9478.
Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O., and Klionsky, D. J. (2007). Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6, 304-312.
Seufferlein, T., and Rozengurt, E. (1996). Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colny formation in small cell lung cancer cells. Cancer Res 56, 3895-3897.
Shiau, A. L., Chen, Y. L., Liao, C. Y., Huang, Y. S., and Wu, C. L. (2001). Prothymosin α enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis. Vaccine 19, 3947-3956.
Shieh, G. S., Shiau, A. L., Yo, Y. T., Lin, P. R., Chang, C. C., Tzai, T. S., and Wu, C. L. (2006). Low-dose etoposide enhances telomerase-dependent adenovirus-mediated cytosine deaminase gene therapy through
augmentation of adenoviral infection and transgene expression in a syngeneic bladder tumor model. Cancer Res 66, 9957-9966.
Smolen, G. A., Sordella, R., Muir, B., Mohapatra, G., Barmettler, A., Archibald, H., Kim, W. J., Okimoto, R. A., Bell, D. W., Sgroi, D. C., et al. (2006). Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor
PHA-665752. Proc Natl Acad Sci U S A 103, 2316-2321.
Subramanian, J., and Govindan, R. (2007). Lung cancer in never smokers: a review. J Clin Oncol 25, 561-570.
Sun, S., Schiller, J. H., Spinola, M., and Minna, J. D. (2007). New molecularly targeted therapies for lung cancer. J Clin Invest 117, 2740-2750.
Tsuboi, M., Ohira, T., Saji, H., Miyajima, K., Kajiwara, N., Uchida, O., Usuda, J., and Kato, H. (2007). The present status of postoperative adjuvant chemotherapy for completely resected non-small cell lung cancer. Ann Thorac Cardiovasc Surg 13, 73-77.
Veronesi, G., Morandi, U., Alloisio, M., Terzi, A., Cardillo, G., Filosso, P., Rea, F., Facciolo, F., Pelosi, G., Gandini, S., et al. (2006). Large cell neuroendocrine carcinoma of the lung: a retrospective analysis of 144
surgical cases. Lung Cancer 53, 111-115.
Wang, H. T. (2005). Oncolytic adenovirus driven by hypoxia- inducible Met promoter for the treatment of hepatocellular carcinoma. Mater's Thesis, National Cheng Kung Universisty, Tainan, Taiwan.
Wang, X., Le, P., Liang, C., Chan, J., Kiewlich, D., Miller, T., Harris, D., Sun, L., Rice, A., Vasile, S., et al. (2003). Potent and selective inhibitors of the Met [hepatocyte growth factor/scatter factor (HGF/SF) receptor]
tyrosine kinase block HGF/SF-induced tumor cell growth and invasion. Mol Cancer Ther 2, 1085-1092.
Weiss, G. J., Vokes, E. E., Bunn, P. A., Jr., Magree, L., Rusk, J., Albert, D., and Kelly, K. (2007). Docetaxel and exisulind in previously treated non-small cell lung cancer (NSCLC) patients: a multicenter, phase II clinical trial. J Thorac Oncol 2, 933-938.
Wickham, T. J. (2003). Ligand-directed targeting of genes to the site of disease. Nat Med 9, 135-139.
Wu, C. L., Shieh, G. S., Chang, C. C., Yo, Y. T., Su, C. H., Chang, M. Y., Huang, Y. H., Wu, P., and Shiau, A. L. (2008). Tumor-selective replication of an oncolytic adenovirus carrying oct-3/4 response elements in murine metastatic bladder cancer models. Clin Cancer Res
14, 1228-1238.
Yang, C. T., You, L., Uematsu, K., Yeh, C. C., McCormick, F., and Jablons, D. M. (2001). p14(ARF) modulates the cytolytic effect of ONYX-015 in mesothelioma cells with wild-type p53. Cancer Res 61, 5959-5963.
Zheng, H., Abdel Aziz, H. O., Nakanishi, Y., Masuda, S., Saito, H., Tsuneyama, K., and Takano, Y. (2007a). Oncogenic role of JC virus in lung cancer. J Pathol 212, 306-315.
Zheng, Y., Ritzenthaler, J. D., Roman, J., and Han, S. (2007b). Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol 37, 681-690.