簡易檢索 / 詳目顯示

研究生: 陳虹儒
Chen, Hong-Ru
論文名稱: 探討人芽囊原蟲半胱胺酸蛋白酶1所扮演的角色
The role of cysteine protease 1 in Blastocystis hominis
指導教授: 辛致煒
Shin, Jyh-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 人芽囊原蟲半胱胺酸蛋白酶1診斷毒力因子
外文關鍵詞: Blastocystis hominis, cysteine protease 1, diagnosis, virulence factor
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 芽囊原蟲為一種廣泛寄生於人類與動物腸道內的真核單細胞原蟲,感染人類的芽囊原蟲共計9個亞型,糞口傳播為主要的傳播途徑,好發於熱帶及亞熱帶地區。感染人芽囊原蟲的患者大多無明顯徵狀,少部分的臨床症狀包括腹痛、腹瀉、噁心、嘔吐以及近幾年發現與大腸急躁症的發生有關。半胱胺酸蛋白酶廣泛存在於植物與動物體內,參與細胞凋亡等生化反應。然而,近幾年發現,半胱胺酸蛋白酶對於原蟲類寄生蟲扮演重要的角色,功能包括對於宿主的免疫逃避或調節、細胞自噬、酶活化、細胞或組織的入侵等。有關人芽囊原蟲對宿主造成致病的研究中,發現其透過半胱胺酸蛋白酶降解宿主細胞分泌的IgA,進而使宿主易感;部分研究認為不同蟲株之間的毒力差異可能與半胱胺酸蛋白酶活性有關。
    根據本實驗室先前研究結果發現,人芽囊原蟲ST7型B蟲株之半胱胺酸蛋白酶1(CP1)存在於不同亞型間,如ST1、ST3及ST7型等的基因組中。基於目前對於人芽囊原蟲病的診斷存在交叉反應且過程繁複,如需抽取糞便DNA等,因此本論文擬著手開發新的診斷方式–以CP1作為分子及免疫診斷。此外,由於CP1蛋白的活性及對宿主的致病性尚未清楚,因此也透過CP1多株抗體中和蟲體內源性CP1蛋白的方式探討CP1蛋白是否為人芽囊原蟲毒力因子之一。結果顯示,利用CP1作為分子與免疫診斷的標的基因具有高專一性及靈敏性。惟CP1多株抗體會與大腸桿菌勝任細胞之內源性蛋白產生交叉反應,因此,若要開發為最終的免疫診斷,則尚需更多的相關技術進行製備,如調整抗體吸附反應條件或開發單株抗體等,以排除可能造成的偽陽性結果。此外,抗體中和蟲體內源性CP1蛋白的細胞病變實驗中發現,CP1能參與人芽囊原蟲對宿主細胞的致病作用,亦可成為多數毒力因子之一。

    Previously, we found that the cysteine protease 1 (CP1) commonly existed among different subtypes of B. hominis, such as 1, 3 and 7. Here, we tested the specificity and sensitivity of CP1 primer, and the results showed that CP1 has the potential to become a new molecular diagnostic method. In addition, we found that CP1 has the potential to become an immunodiagnosis by testing the specificity and sensitivity of CP1 polyclonal antibody. Therefore, in order to develop the final immunodiagnosis, more relevant techniques are needed for preparation, such as absorption experiment or monoclonal antibody, to improve the accuracy of immunodiagnosis. Finally, we found that the CP1 protein of B. hominis can participate in the cytopathic effect of host cells, suggesting that CP1 may be one of the virulence factors of B. hominis.

    口試合格證明……………………………………………………………………..…Ⅰ 中文摘要………………………………………………………………………..……Ⅱ 英文摘要………………………………………………………………………..……Ⅲ 誌謝………………………………………………………………………...…..….....Ⅶ 目錄………………………………………………………………………...………...Ⅷ 表目錄……………………………………………………………………….…..…. XI 圖目錄…………………………………………………………………...………... XII 第一章 人芽囊原蟲緒論 1 1.1型態 1 1.2生活史 1 1.3診斷 2 1.4亞型 3 1.5人芽囊原蟲 3 1.6半胱胺酸蛋白酶 4 1.7半胱胺酸蛋白酶在寄生蟲感染中的作用 5 1.8人芽囊原蟲半胱胺酸蛋白酶的研究 6 1.9 動機 8 第二章 實驗設計 9 第三章 材料與方法 10 3.1人芽囊原蟲的培養 10 3.1.1 培養液的製備 10 3.1.2 培養方式 10 3.1.3 人芽囊原蟲的解凍與保存 10 3.2 Caco2腸道上皮細胞的培養 11 3.2.1 培養液的配置 11 3.2.2 細胞的繼代培養 11 3.2.3 細胞的解凍與凍存 12 3.3分子選殖 12 3.3.1 DNA片段的製備 12 3.3.2 小量質體抽取 15 3.3.3 限制酶切位及切膠純化 16 3.3.4 接合反應與轉型 16 3.4原核重組蛋白質表現 17 3.4.1重組蛋白質的誘導 17 3.4.2 可溶性與不可溶性蛋白的確認 17 3.4.3 蛋白質電泳 18 3.5重組蛋白的純化 18 3.6重組蛋白的鑑定 19 3.7重組蛋白的濃縮與定量 19 3.8重組蛋白的透析與多株抗體的製備 20 3.9 西方點墨法(Western blot) 20 3.10 細胞病變作用測定(Cytopathic effect assay, CPE) 21 3.11 Azocasein assay 21 3.11.1 原理 21 3.11.2 溶液的配置 21 3.11.3 步驟 22 3.12 酵素免疫分析法(ELISA) 22 第四章 結果 23 4.1 cysteine protease 1 (CP1) 作為分子診斷的專一性及靈敏性測試 23 4.2 CP1免疫診斷的開發–多株抗體的製備與專一性測試 24 4.2.1誘導重組蛋白表現 24 4.2.2目標重組蛋白的純化 26 4.2.3西方點墨法測試抗體專一性 26 4.2.4 酵素免疫分析法測試抗體靈敏性及專一性 27 4.3 人芽囊原蟲裂解液活性測試 28 4.3.1 半胱胺酸蛋白酶抑制劑E64與CP1抗體的添加對於人芽囊原蟲蛋白酶活性的影響 28 4.4 人芽囊原蟲裂解液與腸道上皮細胞共培養之細胞病變作用測定 29 第五章 討論 30 5.1人芽囊原蟲診斷方式的探討 30 5.2 人芽囊原蟲毒力因子的探討 32 Supplementary Data 49 附錄1、儀器與材料 52 一、試劑與藥品 52 二、硬體設備 53 參考文獻 55

    參考文獻

    1. Boreham, P.F. and D.J. Stenzel, Blastocystis in humans and animals: morphology, biology, and epizootiology. Adv Parasitol, 1993. 32: p. 1-70.
    2. 辛致煒, et al., 人芽囊原蟲體外純培養法的改良及形態觀察. 中國寄生蟲學與寄生蟲病雜志, 2017(06).
    3. Stenzel, D.J. and P.F. Boreham, Blastocystis hominis revisited. Clin Microbiol Rev, 1996. 9(4): p. 563-84.
    4. Yoshikawa, H., N. Kuwayama, and Y. Enose, Histochemical detection of carbohydrates of Blastocystis hominis. J Eukaryot Microbiol, 1995. 42(1): p. 70-4.
    5. Yoshikawa, H., J. Satoh, and Y. Enose, Light and electron microscopic localization of lipids in Blastocystis hominis. J Electron Microsc (Tokyo), 1995. 44(2): p. 100-3.
    6. Tan, K.S., New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev, 2008. 21(4): p. 639-65.
    7. Zierdt, C.H. and H.K. Tan, Ultrastructure and light microscope appearance of Blastocystis hominis in a patient with enteric disease. Z Parasitenkd, 1976. 50(3): p. 277-83.
    8. Tan, T.C. and K.G. Suresh, Predominance of amoeboid forms of Blastocystis hominis in isolates from symptomatic patients. Parasitol Res, 2006. 98(3): p. 189-93.
    9. Chen, X.Q., et al., In vitro encystation and excystation of Blastocystis ratti. Parasitology, 1999. 118 ( Pt 2): p. 151-60.
    10. Moe, K.T., et al., Observations on the ultrastructure and viability of the cystic stage of Blastocystis hominis from human feces. Parasitol Res, 1996. 82(5): p. 439-44.
    11. Suresh, K., et al., In vitro encystment and experimental infections of Blastocystis hominis. Parasitol Res, 1993. 79(6): p. 456-60.
    12. Singh, M., et al., Elucidation of the life cycle of the intestinal protozoan Blastocystis hominis. Parasitol Res, 1995. 81(5): p. 446-50.
    13. Termmathurapoj, S., et al., The usefulness of short-term in vitro cultivation for the detection and molecular study of Blastocystis hominis in stool specimens. Parasitol Res, 2004. 93(6): p. 445-7.
    14. Hussain, R., et al., Significantly increased IgG2 subclass antibody levels to Blastocystis hominis in patients with irritable bowel syndrome. Am J Trop Med Hyg, 1997. 56(3): p. 301-6.
    15. Zierdt, C.H., W.S. Zierdt, and B. Nagy, Enzyme-linked immunosorbent assay for detection of serum antibody to Blastocystis hominis in symptomatic infections. J Parasitol, 1995. 81(1): p. 127-9.
    16. Yoshikawa, H. and A. Iwamasa, Human Blastocystis subtyping with subtype-specific primers developed from unique sequences of the SSU rRNA gene. Parasitol Int, 2016. 65(6 Pt B): p. 785-791.
    17. Scicluna, S.M., B. Tawari, and C.G. Clark, DNA barcoding of blastocystis. Protist, 2006. 157(1): p. 77-85.
    18. Tan, K.S., et al., Current Views on the Clinical Relevance of Blastocystis spp. Curr Infect Dis Rep, 2010. 12(1): p. 28-35.
    19. Lepczynska, M., et al., Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity? Eur J Clin Microbiol Infect Dis, 2017. 36(9): p. 1531-1540.
    20. Jiang, J.B. and J.G. He, Taxonomic status of Blastocystis hominis. Parasitol Today, 1993. 9(1): p. 2-3.
    21. I, W., et al., - Blastocystis, an unrecognized parasite: an overview of pathogenesis and. - Ther Adv Infect Dis. 2013 Oct;1(5):167-78. doi:10.1177/2049936113504754., 2013(- 2049-9361 (Print)): p. - 167-78.
    22. Seyer, A., et al., Epidemiology and Prevalence of Blastocystis spp. in North Cyprus. Am J Trop Med Hyg, 2017. 96(5): p. 1164-1170.
    23. Mohammad, N.A., et al., Prevalence and risk factors of Blastocystis infection among underprivileged communities in rural Malaysia. Asian Pac J Trop Med, 2017. 10(5): p. 491-497.
    24. Sekar, U. and M. Shanthi, Blastocystis: Consensus of treatment and controversies. Trop Parasitol, 2013. 3(1): p. 35-9.
    25. Oda, K., New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem, 2012. 151(1): p. 13-25.
    26. Sajid, M. and J.H. McKerrow, Cysteine proteases of parasitic organisms. Mol Biochem Parasitol, 2002. 120(1): p. 1-21.
    27. 鄧慶豐, 孫沁, and 嚴宜明, 芽囊原蟲半胱氨酸蛋白酶的研究進展. 贛南醫學院學報, 2018(05).
    28. 段文元, 邱宗文, and 張錫林, 半胱氨酸蛋白酶在醫學寄生蟲學領域的研究進展. 中國血吸蟲病防治雜志, 2004(03).
    29. Siqueira-Neto, J.L., et al., Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis, 2018. 12(8): p. e0006512.
    30. Espinosa-Cantellano, M. and A. Martinez-Palomo, Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev, 2000. 13(2): p. 318-31.
    31. Garcia-Nieto, R.M., et al., Degradation of human secretory IgA1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity. Parasitol Int, 2008. 57(4): p. 417-23.
    32. Tran, V.Q., et al., The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding. J Infect Dis, 1998. 177(2): p. 508-11.
    33. Zhang, Z., et al., Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol, 2000. 37(3): p. 542-8.
    34. Que, X., et al., A surface amebic cysteine proteinase inactivates interleukin-18. Infect Immun, 2003. 71(3): p. 1274-80.
    35. Reed, S.L., et al., The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol, 1995. 155(1): p. 266-74.
    36. Alexander, J., G.H. Coombs, and J.C. Mottram, Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol, 1998. 161(12): p. 6794-801.
    37. Cameron, P., et al., Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. J Immunol, 2004. 173(5): p. 3297-304.
    38. Casgrain, P.A., et al., Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression. PLoS Pathog, 2016. 12(5): p. e1005658.
    39. De Souza Leao, S., et al., Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. J Cell Sci, 1995. 108 ( Pt 10): p. 3219-31.
    40. Scharfstein, J., et al., Trypanosoma cruzi: characterization and isolation of a 57/51,000 m.w. surface glycoprotein (GP57/51) expressed by epimastigotes and bloodstream trypomastigotes. J Immunol, 1986. 137(4): p. 1336-41.
    41. Franke de Cazzulo, B.M., et al., Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol Lett, 1994. 124(1): p. 81-6.
    42. Cazzulo, J.J., V. Stoka, and V. Turk, Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Biol Chem, 1997. 378(1): p. 1-10.
    43. Meirelles, M.N., et al., Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol, 1992. 52(2): p. 175-84.
    44. Duschak, V.G. and A.S. Couto, Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem, 2009. 16(24): p. 3174-202.
    45. Dou, Z., I. Coppens, and V.B. Carruthers, Non-canonical maturation of two papain-family proteases in Toxoplasma gondii. J Biol Chem, 2013. 288(5): p. 3523-34.
    46. Di Cristina, M., et al., Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol, 2017. 2: p. 17096.
    47. Que, X., et al., Toxopain-1 is critical for infection in a novel chicken embryo model of congenital toxoplasmosis. Infect Immun, 2004. 72(5): p. 2915-21.
    48. Drew, M.E., et al., Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem, 2008. 283(19): p. 12870-6.
    49. Sijwali, P.S. and P.J. Rosenthal, Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4384-9.
    50. Sijwali, P.S., et al., Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol, 2006. 150(1): p. 96-106.
    51. Thomas, J.A., et al., A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol, 2018. 3(4): p. 447-455.
    52. Sio, S.W., et al., Protease activity of Blastocystis hominis. Parasitol Res, 2006. 99(2): p. 126-30.
    53. Puthia, M.K., et al., Degradation of human secretory immunoglobulin A by Blastocystis. Parasitol Res, 2005. 97(5): p. 386-9.
    54. Mirza, H. and K.S. Tan, Blastocystis exhibits inter- and intra-subtype variation in cysteine protease activity. Parasitol Res, 2009. 104(2): p. 355-61.
    55. Puthia, M.K., J. Lu, and K.S. Tan, Blastocystis ratti contains cysteine proteases that mediate interleukin-8 response from human intestinal epithelial cells in an NF-kappaB-dependent manner. Eukaryot Cell, 2008. 7(3): p. 435-43.
    56. Wu, B., et al., Blastocystis legumain is localized on the cell surface, and specific inhibition of its activity implicates a pro-survival role for the enzyme. J Biol Chem, 2010. 285(3): p. 1790-8.
    57. Mirza, H., et al., Statin pleiotropy prevents rho kinase-mediated intestinal epithelial barrier compromise induced by Blastocystis cysteine proteases. Cell Microbiol, 2012. 14(9): p. 1474-84.
    58. Nourrisson, C., et al., On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers. Parasitology, 2016. 143(13): p. 1713-1722.
    59. McKerrow, J.H., et al., Proteases in parasitic diseases. Annu Rev Pathol, 2006. 1: p. 497-536.
    60. Que, X. and S.L. Reed, Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev, 2000. 13(2): p. 196-206.
    61. Stenzel, D.J. and P.F. Boreham, A cyst-like stage of Blastocystis hominis. Int J Parasitol, 1991. 21(5): p. 613-5.
    62. Stensvold, C.R., Blastocystis: Genetic diversity and molecular methods for diagnosis and epidemiology. Trop Parasitol, 2013. 3(1): p. 26-34.
    63. Tanyuksel, M. and W.A. Petri, Jr., Laboratory diagnosis of amebiasis. Clin Microbiol Rev, 2003. 16(4): p. 713-29.
    64. Tokmakov, A.A., et al., Multiple post-translational modifications affect heterologous protein synthesis. J Biol Chem, 2012. 287(32): p. 27106-16.
    65. Lee, D.H., et al., Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins. BMC Biotechnol, 2009. 9: p. 27.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE