| 研究生: |
劉政宏 Liu, Cheng-Hong |
|---|---|
| 論文名稱: |
以電化學氧化法對草酸進行降解礦化之研究 Study on Degradation and Mineralization of Oxalic Acid by Electrochemical Oxidation Process |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 礦化 、電化學氧化法 、降解 、次氯酸 、草酸 |
| 外文關鍵詞: | oxalic acid, mineralization, electrochemical oxidation process, hypochlorite, degradation |
| 相關次數: | 點閱:170 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究當中,我們利用電化學氧化法礦化10 mM 草酸,當利用氯離子處理草酸時,可以在電場中產生次氯酸,並對草酸有效礦化。如果處理對象為2mM草酸,可以將礦化率提高至95%以上,並且符合4 mg/L 的飲用水TOC 標準。在實驗中我們也發現,利用電化學氧化法所處理掉的草酸,會直接礦化成為二氧化碳及水,而不會有其他之中間產物。同時也比較了市售之漂白水,還有電化學氧化在陽極產生之次氯酸,發現以本實驗中所產生之次氯酸效果為佳。
而當利用電解芬頓法處理草酸時,發現除了在陽極會有次氯酸生成,溶液中之二價鐵也會在陽極被氧化成三價鐵,導致草酸礦化率下降。而pH 值在本實驗中也扮演了重要之角色,如果可以在低pH 值中操作,礦化率也會相對提升。
另外,在不同之操作條件下,我們也計算出了kobs 值。而利用電解芬頓系統處理實廠廢水時,我們發現因為次氯酸之存在,可將芬頓法處理所產生之中間產物,進一步氧化,並將廢水之COD 值去除約99%。
In this study, we utilize electrochemical oxidation process to mineralize 10 mM oxalic acid. It shows great TOC removal efficiency when using Cl- as solution anion,
due to the formation of hypochlorite on the anode. Over 95% of TOC is removed to meet 4 mg/L of the standard of drinking water when 2 mM of oxalic acid is treated.
In the electrogenerated hypochlorite system, oxalic acid is mineralized into CO2 and H2O without formation of any other intermediates. We also find that the degradation of oxalic acid by electrogenerated hypochlorite is better than the chemical dosage of commercial hypochlorite solution.
We also utilize electro-Fenton system to treat oxalic acid. It is found that except for the Cl- oxidized on the anode, the existence of Fe2+ may also be oxidized
on the anode. Therefore, the mineralization efficiency of oxalic acid decreases. pH value is a major factor that affect the mineralization efficiency. If the solution pH
could be kept at low value, better TOC removal could be reached.
In addition, we also calculate the observed reaction constant kobs with different condition of operation.
When industrial wastewater is treated, almost 99% of COD could be removed when electro-Fenton process is utilized due to the large amount of Cl- contained in the solution that can oxidize the intermediate.
Reference
Andreozzi, R., Caprio, V., Insola, A., and Marotta, R., 1999. Advanced oxidation
processes (AOP) for water purification and recovery. Catal. Today 53, 51–59.
Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1949. Reactions of
ferrous and ferric ions with hydrogen peroxide, Nature 163, 692–694.
Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951a. Reactions of
ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction,
Trans. Faraday Soc. 47, 462–500.
Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951b. Reactions of
ferrous and ferric ions with hydrogen peroxide. Part II.—The ferric ion reaction,
Trans. Faraday Soc. 47, 591–616.
Bishop, D.F., Stern, G., Fleischman, M., and Marshall, L.S., 1968. Hydrogen peroxide
catalytic oxidation of refractory municipal waste waters, I&EC Proc. Design
Dev. 7, 110–117.
Bonfatti, F., De Battisti, A., Ferro S., Lodi, G., Osti S., 2000a. Anodic mineralization
of organic substrates in chloride-containing aqueous media Electrochim. Acta, n.
46, 305-314.
Bonfatti, F., Ferro S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A., 2000b.
Electrochemical incineration of glucose as a model organic subtrate. Part 2:
Role of the active chlorine mediation. Electrochem. Soc., n. 147, 592-596.
Boudenne, J.L., Cerclier, O., Galea, J., Vlist, E.V., 1996. Appl. Catal. A, 143.
Boudenne, J.L., Cerclier, O., 1999. Performance of carbon black slurry electrodes for
4-chlorophenol oxidation, Water Res. 33(2), 494–504.
Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1998. Critical review
of rate constants for reactions of hydrated electrons, hydrogen atoms and
84
hydroxyl radicals (·OH/·O−) in aqueous solutions. Phys. Chem. Ref. Data 17,
513–886.
Carlos, A., Martı´nez-Huitle., Sergio Ferro., 2006. Electrochemical oxidation of
organic pollutants for the wastewater treatment: direct and indirect processes.
Chemical Society Review.
Chang, H., Johnson, D.C., 1990a. Electrocatalysis of anodic oxygen — transfer
reactions. Electrochem Soc. 137, 2452—2457.
Chang, H., Johnson, D.C., 1990b. Electrochem Soc. 137, 3108–3113.
Chang, P.S., 2004. Study on the treatment of reactive dye-Black B by H2O2/Fe2+
chemical oxidation method. Master’s thesis.
Chen, G., 2004. Sep. Purif. Technol. 38, 11–41.
Chen, R., and Pignatello, J.J., 1997. Role of quinone intermediates as electron shuttles
in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ.
Sci. Technol. 31, 2399–2406.
Chettiar, M., Watkinson, A.P., 1983. Anodic oxidation of phenolics found in coal
conversion effluents. Can Chem Eng. 61(4), 568-574.
Christensen, H., Sehested, K., and Løgager, T., 1993. The reaction of hydrogen
peroxide with Fe(II) ions at elevated temperatures, Radiat. Phys. Chem. 41,
575–578.
Comninellis, Ch., Plattner, E., 1988. Electrochemical wastewater treatment. Chimia
42, 250–252.
Comninellis, Ch., 1994. Electro catalysis in the electrochemical
conversion/combustion of organic pollutants for wastewater treatment.
Electrochimica Acta. 39, 1857–1862.
Comninellis, Ch., Nerini, A., 1995. Anode oxidation of phenol in the presence of
85
NaCl for wastewater treatment. Appl. Electrochem. 25, 23–28.
Comninellis, Ch., De Battisti, A., 1996. Electrocatalysis in anodic oxidation of.
organics with simultaneous oxygen evolution. Chim. Phys. 93, 673–679.
185–202.
Do, J.S., Yeh, W.C., Chao, I.Y., 1997. Kinetics of the Oxidative Degradation of
Formaldehyde with Electrogenerated Hypochlorite Ion. Ind. Eng. Chem. Res. 36,
349-356.
Feng, J., and Johnson, D.C., 1990. Electro catalysis of anodic oxygen-transfer
reactions: alpha-lead dioxide electrodeposited on stainless steel substrates.
Electrochem. Soc. 137, 507–510.
Feng, J., Johnson, D.C., Lowery S.N., and Carey, J.J., 1994. Electrocatalysis Of
Anodic Oxygen-. Transfer Reactions. Evolution Of Ozone. Electrochem. Soc.
141, 2708.
Fenton, H.J., 1984. Oxidation of tartaric acid in presence of iron. Chem. Soc. 65,
899–910.
Fernando J. Beltran., Francisco J. Rivas., Lidia A. Fernandez., Pedro M. Alvarez.,
2002. Ramon Montero-de-Espinosa. Kinetics of catalytic ozonation of oxalic
acid in water with activated carbon. Ind. Eng. Chem. Res. 41, 6510–6517.
Foti, G., Gandini, D., Comninellis, Ch., 1997. Anodic oxidation of organics on.
thermally prepared oxide electrodes. Curr. Top. Electrochem. 5, 71–91.
Gallard, H., De Laat, J., and Legube, B., 1998. Influence du pH sur la vitesse
d’oxydation de composés organiques par FeII/H2O2: Mécanismes réactionnels et
modélisation. N. J. Chem. 22, 263–268.
Gallard, H., De Laat, J., and Legube, B., 1999. Spectrophotometric study of the
formation of iron(III)–hydroperoxy complexes in homogeneous aqueous
86
solutions. Wat. Res. 33, 2929–2936.
Gallard, H., and De Laat, J., 2000. Kinetic modelling of Fe(III)/H2O2 oxidation
reactions in dilute aqueous solution using atrazine as a model organic compound,
Wat. Res. 34, 3107–3116.
Grattell, M., and Kirk, D.W., 1990. Can. J. Eng. 68, 997-1003.
Grimm J., Bessarabov D.G., Maier W., Storck S., Sanderson R.D., 1998. Sol-gel
film-preparation of novel electrodes for the electrocatalytic oxidation of organic
pollutants in water. Desalination, 115 . 295–302.
Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by
iron salts, Proc. Roy. Soc. A. 134, 332–351.
Hofseth, C.S., Chapman, T.W., 1999. Electrochemical destruction of dilute cyanide by
copper-catalyzed oxidation in a flow-through porous electrode. Electrochem.
Soc. 146, 199–207.
Hsueh, C.L., 2006. Using Novel Supported Iron Oxides as Heterogeneous
Photoassisted Fenton Catalysts for degradation of Azo Dye. Doctor’s thesis.
Huang, Y.H., Ting, W.P., Lu, M.C., 2004. Zhang, H. Comparison of a Novel
electro-Fenton Method with Fenton's Reagent in Treating Organic Acids, IWA
Singapore.
Juttner, K., Galla, U., Schmieder, H., 2000. Environmental Electrochemistry:
Fundamentals and Applications in Pollution Abatement. Electrochim. Acta. 45
( 15 - 16) 2575 -2594.
Kiwi, J., Denisov, N., Gak, Y., Ovanesyan, N., Buffat, P., Suvorova, E., Gostev, F.,
Titov, A., Albers, P., and Nadtochenko, V., 2002. Catalytic Fe3+ clusters and
complexes in Nafion active in photo-Fenton processes. High-resolution electron
microscopy and femtosecond studies, Langmuir . 18, 9054–9066.
87
Lin, L.W., 2006. The treatment of Citrate and Hypophosphite in electroless plating
solution by AOPs. Master’s thesis.
Lin, S.H., Wu, C.L., 1997. Electrochemical nitrite and ammonia oxidation in sea
water. Environ. Sci. Health, Part A. 32, 2125–2138.
Lu, M.C., 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence
of goethite. Chemosphere. 40, 125–130.
Manahan, S.E., 1994. Environmental Chemistry, Lewis Publishers, Boca Raton, USA.
223–240.
Manriquez, J., Bravo, J.L., Gutierrez-Granados, S., Succar, S.S., Bied-Charreton, C.,
Ordaz, A.A., Bedioui, F., 1999. Anal. Chim. Acta. 378, 159-168.
Marselli, B., Garcia-Gomez, J., Michaud P.A., Rodrigo, M.A., Comninellis, Ch., 2003.
Electrochemical Synthesis and Engineering Electrogeneration of Hydroxyl
Radicals on Boron-Doped Diamond Electrodes, Journal of the Electrochemical
Society. 150, 79-83.
Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D.L., Bakac, A., and Espensen,
J.H., 1988. Reactions of low-valent transition-metal complexes with hydrogen
peroxide. Are they “Fenton-like” or not ? 1. The case of Cu+
aq and Cr2+
aq. Am.
Chem. Soc. 110, 4293–4297.
Mieluch, J., Sadkowski, A., Wild, J., and Zoltowski, P., 1975. Chem. 54(9), 513–516.
Murphy, O.J., Hitchens, G.D., Kaba, L., Verostko, C.E., 1992. Direct electrochemical
oxidation of organics for wastewater treatment. Wat.Res. 26, 443–451.
Naumczyk, J., Szpyrkowicz, L., Grandi, F.Z., 1996. Electrochemical treatment of
texitile wasterwater Water Sci. Technol. 33(2), 17-24.
Pignatello, J., 1992. Dark and photoassisted Fe3+-catalyzed degradation of
chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol. 26,
88
944–951.
Pignatello, J.J., Oliveros E., Mackay, A., 2006. Advanced Oxidation Processes for
Organic Contaminant Destruction Based on the Fenton Reaction and Related
Chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1-84.
Polcaro, A.M., Palmas, S., 1997. Electrochemical oxidation of chlorophenols. Ind.
Eng. Chem. Res. 36 (5), 1791-1798.
Rajalo, G., and Petrovskaya, T., 1996. Selective Electrochemical Oxidation of
Sulphides in Tannery Wastewater Environ. Technol. 17, 605–612.
Rajeshwar, K., Ibanez, J.G., 1994. Electrochemistry and environment. Appl.
Electrochem. 24(7), 1077-1091.
Rajeshwar, K., Ibanez, J.G., 1997. Environmental Electrochemistry: Fundamentals
and Applications in Pollution Abatement; Academic Press: San Diego, CA.
Rao, N.N., Somasekhar, K.M., Kaul, S.N. and Szpyrkowicz, L.J., 2001.
Electrochemical oxidation of tannery wastewater. Chem. Technol. Biotechnol.
76, 1124–1131.
Rigg, T., Taylor, W., and Weiss, J., 1954. The rate constant of the reaction between
hydrogen peroxide and ferrous ions. Chem. Phys. 22, 575–577.
Simond, O., Schaller, V., Comninellis, Ch., 1997. Theoretical model for the anodic
oxidation of organics on metal oxide electrodes. Electrochim Acta. 42, 2009.
Sleptsov, G.V., Gladikii A.I., Sokol E.Y. and Novikova, S.P., 1987. Elektronnaya
Obrabotka Materialov. 6, 69-72.
Subramanyan Vasudevan., Swaminathan Mohan,, Ganapathy Sozhan., Nenmeni
Subbarao Raghavendran., and Chellapa Vadivel Murugan., 2006. Studies on the
Oxidation of As(III) to As(V) by In-Situ-Generated Hypochlorite Ind. Eng.
Chem. Res. 45, 7729-7732.
89
Sylva, R.N.. 1972. The hydrolysis of iron(III). Rev. Pure Appl. Chem. 22, 115–130.
Szpyrkowicz, L., Naumczyk, J., Grandi, F.Z.,1994. Toxicol. Environ. Chem. 44,
189–202.
Szulbinski, W.S., 2000. Fenton reaction of iron chelates involving
polyazacyclononane. The ligand structure effect, Polish. Chem. 74, 109–124.
Tahar, N.B., Savall, A., 1998. Mechanistic aspects of phenol electrochemical
degradation by oxidation on Ta/PbO2 anode. Electrochem Soc. 145, 3427-3434.
Treimer, S.E., Feng, J., Scholten M.D., Johnson D.C., and Davenport A.J., 2001.
Comparison of voltammetric responses of toluene and xylenes at iron(III)-doped,
bismuth(V)-doped, and undoped β-lead dioxide film electrodes in 0.50 M H2SO4.
Electrochem. Soc. 148, 459–463..
Vitt, J.E., Johnson, D.C., 1992. The Importance of Anodic Discharge of H2O in.
Acidic Oxygen-Transfer Reactions. Electrochem. Soc. 139, 774–778.
Walling, C., and Goosen, A., 1973. Mechanism of the ferric ion catalyzed
decomposition of hydrogen peroxide. Effect of organic substrates. Am. Chem.
Soc. 95, 2987.
Walling, C., 1975. Fenton’s reagent revisited, Acc. Chem. Res. 8, 125-131.
Wells, C.F., and Salam, M.A., 1965. Hydrolysis of ferrous ions: A kinetic method for
determination of the Fe(II) species, Nature. 205, 690–692.
Wells, C.F., and Salam, M.A., 1968. The effect of pH on the kinetics of the reaction of
iron(II) with hydrogen peroxide in perchlorate media. Chem. Soc. A. 24–29.
Zhan, X.M., Wang, J.L., Wen, X.H., and Qian, Y., 2001. Indirect electrochemical
treatment of saline dye stuff wastewater Environ. Technol. 22, 1105–1111.