簡易檢索 / 詳目顯示

研究生: 劉政宏
Liu, Cheng-Hong
論文名稱: 以電化學氧化法對草酸進行降解礦化之研究
Study on Degradation and Mineralization of Oxalic Acid by Electrochemical Oxidation Process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 89
中文關鍵詞: 礦化電化學氧化法降解次氯酸草酸
外文關鍵詞: oxalic acid, mineralization, electrochemical oxidation process, hypochlorite, degradation
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究當中,我們利用電化學氧化法礦化10 mM 草酸,當利用氯離子處理草酸時,可以在電場中產生次氯酸,並對草酸有效礦化。如果處理對象為2mM草酸,可以將礦化率提高至95%以上,並且符合4 mg/L 的飲用水TOC 標準。在實驗中我們也發現,利用電化學氧化法所處理掉的草酸,會直接礦化成為二氧化碳及水,而不會有其他之中間產物。同時也比較了市售之漂白水,還有電化學氧化在陽極產生之次氯酸,發現以本實驗中所產生之次氯酸效果為佳。
    而當利用電解芬頓法處理草酸時,發現除了在陽極會有次氯酸生成,溶液中之二價鐵也會在陽極被氧化成三價鐵,導致草酸礦化率下降。而pH 值在本實驗中也扮演了重要之角色,如果可以在低pH 值中操作,礦化率也會相對提升。
    另外,在不同之操作條件下,我們也計算出了kobs 值。而利用電解芬頓系統處理實廠廢水時,我們發現因為次氯酸之存在,可將芬頓法處理所產生之中間產物,進一步氧化,並將廢水之COD 值去除約99%。

    In this study, we utilize electrochemical oxidation process to mineralize 10 mM oxalic acid. It shows great TOC removal efficiency when using Cl- as solution anion,
    due to the formation of hypochlorite on the anode. Over 95% of TOC is removed to meet 4 mg/L of the standard of drinking water when 2 mM of oxalic acid is treated.
    In the electrogenerated hypochlorite system, oxalic acid is mineralized into CO2 and H2O without formation of any other intermediates. We also find that the degradation of oxalic acid by electrogenerated hypochlorite is better than the chemical dosage of commercial hypochlorite solution.
    We also utilize electro-Fenton system to treat oxalic acid. It is found that except for the Cl- oxidized on the anode, the existence of Fe2+ may also be oxidized
    on the anode. Therefore, the mineralization efficiency of oxalic acid decreases. pH value is a major factor that affect the mineralization efficiency. If the solution pH
    could be kept at low value, better TOC removal could be reached.
    In addition, we also calculate the observed reaction constant kobs with different condition of operation.
    When industrial wastewater is treated, almost 99% of COD could be removed when electro-Fenton process is utilized due to the large amount of Cl- contained in the solution that can oxidize the intermediate.

    CONTENTS Chapter 1 Introduction ......................................................... 9 1.1 Background...................................................................9 1.2 Research objective .........................................................10 Chapter 2 Literature review ................................................... 11 2.1 Fenton reaction.............................................................11 2.1.1 Fundamental chemistry of the Fenton reaction..............................13 2.1.2 Speciation of iron and its effects on reactivity. ferrous ion ............14 2.1.3 Speciation of iron and its effects on reactivity: ferric ion..............16   Influence of inorganic ions .................................................17 2.2 Electrochemical oxidation processes ........................................18 2.2.1 Direct and indirect electrochemical oxidation ............................21   Electrochemical oxidation mechanism..........................................21   Direct anodic oxidation......................................................25   Indirect anodic oxidation ...................................................26 2.3 Treatment of oxalic acid....................................................29 2.3.1 Related literature........................................................29 2.3.2 Previous work ............................................................30 Chapter 3 Experimental method.................................................. 42 3.1 Framework of the experiment.................................................42 3.2 Materials ..................................................................44 3.3 Equipment and instrument of experiment......................................44 3.4 Experiment of mineralization of oxalic acid.................................46 3.4.1 Reductive efficiency of Fe3+ .............................................46 3.4.2 Mineralization of oxalic acid with traditional Fenton process.............46 3.4.3 Mineralization of oxalic acid in hypochlorite system in the presence of electrolysis process ...........................................................47 3.4.4 Comparison of different techniques on the treatment of oxalic acid .......47 3.4.5 Treatment of industrial wastewater with different method .................48 Chapter 4 Results and Discussion .............................................. 49 4.1 Mineralization of oxalic acid with iron system..............................49 4.1.1 Electrochemical reductive efficiency of iron system.......................49   Effect of different types of cathode.........................................49   Effect of different source of iron...........................................52   Effect of different concentration of Fe3+....................................54 4.1.2 Mineralization of oxalic acid ............................................56 4.2 Mineralization of oxalic acid without iron system ..........................62 4.2.1 Effect of anion on the mineralization of oxalic acid......................66 4.2.2 Effect of concentration of Cl- on TOC removal.............................68 4.2.3 Effect of different concentration of oxalic acid on TOC removal ..........70 4.2.4 Effect of different current supply on TOC removal.........................72 4.2.5 Effect of different initial pH value on mineralization of oxalic acid ....74 4.3 Mineralization of oxalic acid with combination of Fenton process and electrolysis method ............................................................75 4.4 Degradation of industrial wastewater .......................................78 Chapter 5 Conclusions and Commendations .................... ...................80 5.1 Conclusions.................................................................80 5.2 Commendations ..............................................................82 Reference ......................................................................83

    Reference
    Andreozzi, R., Caprio, V., Insola, A., and Marotta, R., 1999. Advanced oxidation
    processes (AOP) for water purification and recovery. Catal. Today 53, 51–59.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1949. Reactions of
    ferrous and ferric ions with hydrogen peroxide, Nature 163, 692–694.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951a. Reactions of
    ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction,
    Trans. Faraday Soc. 47, 462–500.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951b. Reactions of
    ferrous and ferric ions with hydrogen peroxide. Part II.—The ferric ion reaction,
    Trans. Faraday Soc. 47, 591–616.
    Bishop, D.F., Stern, G., Fleischman, M., and Marshall, L.S., 1968. Hydrogen peroxide
    catalytic oxidation of refractory municipal waste waters, I&EC Proc. Design
    Dev. 7, 110–117.
    Bonfatti, F., De Battisti, A., Ferro S., Lodi, G., Osti S., 2000a. Anodic mineralization
    of organic substrates in chloride-containing aqueous media Electrochim. Acta, n.
    46, 305-314.
    Bonfatti, F., Ferro S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A., 2000b.
    Electrochemical incineration of glucose as a model organic subtrate. Part 2:
    Role of the active chlorine mediation. Electrochem. Soc., n. 147, 592-596.
    Boudenne, J.L., Cerclier, O., Galea, J., Vlist, E.V., 1996. Appl. Catal. A, 143.
    Boudenne, J.L., Cerclier, O., 1999. Performance of carbon black slurry electrodes for
    4-chlorophenol oxidation, Water Res. 33(2), 494–504.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1998. Critical review
    of rate constants for reactions of hydrated electrons, hydrogen atoms and
    84
    hydroxyl radicals (·OH/·O−) in aqueous solutions. Phys. Chem. Ref. Data 17,
    513–886.
    Carlos, A., Martı´nez-Huitle., Sergio Ferro., 2006. Electrochemical oxidation of
    organic pollutants for the wastewater treatment: direct and indirect processes.
    Chemical Society Review.
    Chang, H., Johnson, D.C., 1990a. Electrocatalysis of anodic oxygen — transfer
    reactions. Electrochem Soc. 137, 2452—2457.
    Chang, H., Johnson, D.C., 1990b. Electrochem Soc. 137, 3108–3113.
    Chang, P.S., 2004. Study on the treatment of reactive dye-Black B by H2O2/Fe2+
    chemical oxidation method. Master’s thesis.
    Chen, G., 2004. Sep. Purif. Technol. 38, 11–41.
    Chen, R., and Pignatello, J.J., 1997. Role of quinone intermediates as electron shuttles
    in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ.
    Sci. Technol. 31, 2399–2406.
    Chettiar, M., Watkinson, A.P., 1983. Anodic oxidation of phenolics found in coal
    conversion effluents. Can Chem Eng. 61(4), 568-574.
    Christensen, H., Sehested, K., and Løgager, T., 1993. The reaction of hydrogen
    peroxide with Fe(II) ions at elevated temperatures, Radiat. Phys. Chem. 41,
    575–578.
    Comninellis, Ch., Plattner, E., 1988. Electrochemical wastewater treatment. Chimia
    42, 250–252.
    Comninellis, Ch., 1994. Electro catalysis in the electrochemical
    conversion/combustion of organic pollutants for wastewater treatment.
    Electrochimica Acta. 39, 1857–1862.
    Comninellis, Ch., Nerini, A., 1995. Anode oxidation of phenol in the presence of
    85
    NaCl for wastewater treatment. Appl. Electrochem. 25, 23–28.
    Comninellis, Ch., De Battisti, A., 1996. Electrocatalysis in anodic oxidation of.
    organics with simultaneous oxygen evolution. Chim. Phys. 93, 673–679.
    185–202.
    Do, J.S., Yeh, W.C., Chao, I.Y., 1997. Kinetics of the Oxidative Degradation of
    Formaldehyde with Electrogenerated Hypochlorite Ion. Ind. Eng. Chem. Res. 36,
    349-356.
    Feng, J., and Johnson, D.C., 1990. Electro catalysis of anodic oxygen-transfer
    reactions: alpha-lead dioxide electrodeposited on stainless steel substrates.
    Electrochem. Soc. 137, 507–510.
    Feng, J., Johnson, D.C., Lowery S.N., and Carey, J.J., 1994. Electrocatalysis Of
    Anodic Oxygen-. Transfer Reactions. Evolution Of Ozone. Electrochem. Soc.
    141, 2708.
    Fenton, H.J., 1984. Oxidation of tartaric acid in presence of iron. Chem. Soc. 65,
    899–910.
    Fernando J. Beltran., Francisco J. Rivas., Lidia A. Fernandez., Pedro M. Alvarez.,
    2002. Ramon Montero-de-Espinosa. Kinetics of catalytic ozonation of oxalic
    acid in water with activated carbon. Ind. Eng. Chem. Res. 41, 6510–6517.
    Foti, G., Gandini, D., Comninellis, Ch., 1997. Anodic oxidation of organics on.
    thermally prepared oxide electrodes. Curr. Top. Electrochem. 5, 71–91.
    Gallard, H., De Laat, J., and Legube, B., 1998. Influence du pH sur la vitesse
    d’oxydation de composés organiques par FeII/H2O2: Mécanismes réactionnels et
    modélisation. N. J. Chem. 22, 263–268.
    Gallard, H., De Laat, J., and Legube, B., 1999. Spectrophotometric study of the
    formation of iron(III)–hydroperoxy complexes in homogeneous aqueous
    86
    solutions. Wat. Res. 33, 2929–2936.
    Gallard, H., and De Laat, J., 2000. Kinetic modelling of Fe(III)/H2O2 oxidation
    reactions in dilute aqueous solution using atrazine as a model organic compound,
    Wat. Res. 34, 3107–3116.
    Grattell, M., and Kirk, D.W., 1990. Can. J. Eng. 68, 997-1003.
    Grimm J., Bessarabov D.G., Maier W., Storck S., Sanderson R.D., 1998. Sol-gel
    film-preparation of novel electrodes for the electrocatalytic oxidation of organic
    pollutants in water. Desalination, 115 . 295–302.
    Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by
    iron salts, Proc. Roy. Soc. A. 134, 332–351.
    Hofseth, C.S., Chapman, T.W., 1999. Electrochemical destruction of dilute cyanide by
    copper-catalyzed oxidation in a flow-through porous electrode. Electrochem.
    Soc. 146, 199–207.
    Hsueh, C.L., 2006. Using Novel Supported Iron Oxides as Heterogeneous
    Photoassisted Fenton Catalysts for degradation of Azo Dye. Doctor’s thesis.
    Huang, Y.H., Ting, W.P., Lu, M.C., 2004. Zhang, H. Comparison of a Novel
    electro-Fenton Method with Fenton's Reagent in Treating Organic Acids, IWA
    Singapore.
    Juttner, K., Galla, U., Schmieder, H., 2000. Environmental Electrochemistry:
    Fundamentals and Applications in Pollution Abatement. Electrochim. Acta. 45
    ( 15 - 16) 2575 -2594.
    Kiwi, J., Denisov, N., Gak, Y., Ovanesyan, N., Buffat, P., Suvorova, E., Gostev, F.,
    Titov, A., Albers, P., and Nadtochenko, V., 2002. Catalytic Fe3+ clusters and
    complexes in Nafion active in photo-Fenton processes. High-resolution electron
    microscopy and femtosecond studies, Langmuir . 18, 9054–9066.
    87
    Lin, L.W., 2006. The treatment of Citrate and Hypophosphite in electroless plating
    solution by AOPs. Master’s thesis.
    Lin, S.H., Wu, C.L., 1997. Electrochemical nitrite and ammonia oxidation in sea
    water. Environ. Sci. Health, Part A. 32, 2125–2138.
    Lu, M.C., 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence
    of goethite. Chemosphere. 40, 125–130.
    Manahan, S.E., 1994. Environmental Chemistry, Lewis Publishers, Boca Raton, USA.
    223–240.
    Manriquez, J., Bravo, J.L., Gutierrez-Granados, S., Succar, S.S., Bied-Charreton, C.,
    Ordaz, A.A., Bedioui, F., 1999. Anal. Chim. Acta. 378, 159-168.
    Marselli, B., Garcia-Gomez, J., Michaud P.A., Rodrigo, M.A., Comninellis, Ch., 2003.
    Electrochemical Synthesis and Engineering Electrogeneration of Hydroxyl
    Radicals on Boron-Doped Diamond Electrodes, Journal of the Electrochemical
    Society. 150, 79-83.
    Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D.L., Bakac, A., and Espensen,
    J.H., 1988. Reactions of low-valent transition-metal complexes with hydrogen
    peroxide. Are they “Fenton-like” or not ? 1. The case of Cu+
    aq and Cr2+
    aq. Am.
    Chem. Soc. 110, 4293–4297.
    Mieluch, J., Sadkowski, A., Wild, J., and Zoltowski, P., 1975. Chem. 54(9), 513–516.
    Murphy, O.J., Hitchens, G.D., Kaba, L., Verostko, C.E., 1992. Direct electrochemical
    oxidation of organics for wastewater treatment. Wat.Res. 26, 443–451.
    Naumczyk, J., Szpyrkowicz, L., Grandi, F.Z., 1996. Electrochemical treatment of
    texitile wasterwater Water Sci. Technol. 33(2), 17-24.
    Pignatello, J., 1992. Dark and photoassisted Fe3+-catalyzed degradation of
    chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol. 26,
    88
    944–951.
    Pignatello, J.J., Oliveros E., Mackay, A., 2006. Advanced Oxidation Processes for
    Organic Contaminant Destruction Based on the Fenton Reaction and Related
    Chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1-84.
    Polcaro, A.M., Palmas, S., 1997. Electrochemical oxidation of chlorophenols. Ind.
    Eng. Chem. Res. 36 (5), 1791-1798.
    Rajalo, G., and Petrovskaya, T., 1996. Selective Electrochemical Oxidation of
    Sulphides in Tannery Wastewater Environ. Technol. 17, 605–612.
    Rajeshwar, K., Ibanez, J.G., 1994. Electrochemistry and environment. Appl.
    Electrochem. 24(7), 1077-1091.
    Rajeshwar, K., Ibanez, J.G., 1997. Environmental Electrochemistry: Fundamentals
    and Applications in Pollution Abatement; Academic Press: San Diego, CA.
    Rao, N.N., Somasekhar, K.M., Kaul, S.N. and Szpyrkowicz, L.J., 2001.
    Electrochemical oxidation of tannery wastewater. Chem. Technol. Biotechnol.
    76, 1124–1131.
    Rigg, T., Taylor, W., and Weiss, J., 1954. The rate constant of the reaction between
    hydrogen peroxide and ferrous ions. Chem. Phys. 22, 575–577.
    Simond, O., Schaller, V., Comninellis, Ch., 1997. Theoretical model for the anodic
    oxidation of organics on metal oxide electrodes. Electrochim Acta. 42, 2009.
    Sleptsov, G.V., Gladikii A.I., Sokol E.Y. and Novikova, S.P., 1987. Elektronnaya
    Obrabotka Materialov. 6, 69-72.
    Subramanyan Vasudevan., Swaminathan Mohan,, Ganapathy Sozhan., Nenmeni
    Subbarao Raghavendran., and Chellapa Vadivel Murugan., 2006. Studies on the
    Oxidation of As(III) to As(V) by In-Situ-Generated Hypochlorite Ind. Eng.
    Chem. Res. 45, 7729-7732.
    89
    Sylva, R.N.. 1972. The hydrolysis of iron(III). Rev. Pure Appl. Chem. 22, 115–130.
    Szpyrkowicz, L., Naumczyk, J., Grandi, F.Z.,1994. Toxicol. Environ. Chem. 44,
    189–202.
    Szulbinski, W.S., 2000. Fenton reaction of iron chelates involving
    polyazacyclononane. The ligand structure effect, Polish. Chem. 74, 109–124.
    Tahar, N.B., Savall, A., 1998. Mechanistic aspects of phenol electrochemical
    degradation by oxidation on Ta/PbO2 anode. Electrochem Soc. 145, 3427-3434.
    Treimer, S.E., Feng, J., Scholten M.D., Johnson D.C., and Davenport A.J., 2001.
    Comparison of voltammetric responses of toluene and xylenes at iron(III)-doped,
    bismuth(V)-doped, and undoped β-lead dioxide film electrodes in 0.50 M H2SO4.
    Electrochem. Soc. 148, 459–463..
    Vitt, J.E., Johnson, D.C., 1992. The Importance of Anodic Discharge of H2O in.
    Acidic Oxygen-Transfer Reactions. Electrochem. Soc. 139, 774–778.
    Walling, C., and Goosen, A., 1973. Mechanism of the ferric ion catalyzed
    decomposition of hydrogen peroxide. Effect of organic substrates. Am. Chem.
    Soc. 95, 2987.
    Walling, C., 1975. Fenton’s reagent revisited, Acc. Chem. Res. 8, 125-131.
    Wells, C.F., and Salam, M.A., 1965. Hydrolysis of ferrous ions: A kinetic method for
    determination of the Fe(II) species, Nature. 205, 690–692.
    Wells, C.F., and Salam, M.A., 1968. The effect of pH on the kinetics of the reaction of
    iron(II) with hydrogen peroxide in perchlorate media. Chem. Soc. A. 24–29.
    Zhan, X.M., Wang, J.L., Wen, X.H., and Qian, Y., 2001. Indirect electrochemical
    treatment of saline dye stuff wastewater Environ. Technol. 22, 1105–1111.

    下載圖示 校內:2010-07-05公開
    校外:2010-07-05公開
    QR CODE