| 研究生: |
黃瑞賢 Huang, Jui-Hsien |
|---|---|
| 論文名稱: |
鋼筋混凝土梁柱複合構件受高溫之行為研究-普通混凝土外柱之行為 Behavior of Reinforced Concrete Beam-Column Sub-Assemblage Subjected to Elevated Temperatures–Ordinary Concrete Exterior Columns |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 梁柱複合構件 、柱接頭 、普通混凝土 、火 、耐火性能 |
| 外文關鍵詞: | beam-column sub-assemblages, column, beam-column joint, ordinary concrete, fire, performance-fire resistance |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討實尺寸梁柱複合構件的外柱與接頭部份在高溫中、後之結構行為,以期對建築物受火害之安全評估有所助益。實驗研究方面,依據ISO 834之標準昇溫曲線加溫測試普通混凝土試體(NC4與NC6),外柱四面受高溫作用,主要量測項目為昇溫及冷卻過程之變形與溫度變化,並探討高溫後之殘餘強度;理論研究方面,利用套裝軟體ANSYS分析柱與接頭斷面內部之溫度變化,再以實驗結果相印證,同時納入前期研究結果 (外柱三面受火之試體NC5) 做比較。
主要研究成果如下:
1. 高溫120分鐘時,四面受火試體接頭中心混凝土溫度比三面受火試體高約11~35℃,梁在有加載情形下,四面受火與三面受火試體之梁柱接頭轉動角皆為順鐘向轉動。接頭之水平位移往爐外移動的時間,四面受火柱約在昇溫10~15分鐘後,三面受火柱約在昇溫20分鐘後,此因梁之自身膨脹變形大於柱變形造成之接頭水平位移。
2. 殘餘強度測試過程,四面受火條件下之上柱與下柱曲率較三面受火條件下大,此因柱在前者受火情況下之材料劣化較後者嚴重。
3. 高溫前、後,柱之軸向變位皆呈線性,但高溫後柱之軸向變位大於高溫前,且四面受火試體之軸向變位也大於三面受火試體。
The behavior of full-scale reinforced concrete beam-exterior column sub-assemblage during and after elevated temperature test is studied. In the experimental study, the ordinary concrete specimens (NC4 and NC6) were tested according to ISO 834 temperature-time curve. The column was subjected to four-face heating. The primary objectives were the deformation of specimens during heating and cooling stages and the distribution of temperature, and the residual strength. In the analytical study, the ANSYS program was used to predict the temperature distribution of cross section in column and joint. The predictions were then compared with the test results. Also, the results of specimen NC5 in previous study were used for comparisons.
The primary findings according to this study are as follows:
1. Upon heating 120 minutes, the temperature of concrete at center of joint under four-face heating was 13~35℃ greater than that under three-face heating. The joint rotated clockwise during heating for specimens under three-face heating and four-face heating. The time of initiation of horizontal displacement toward outside of furnace was 10~15 minutes from heating for specimens under three-face heating, and 20 minutes for those under four-face heating, The effect of thermal expansion of beam on joint displacement was more pronounced than thermal deformation of column, which leads to the difference of horizontal displacement in joint during heating.
2. The curvatures of upper and lower columns under four-face heating were greater than those under three-face heating. Because the column in the former case is subjected to severe material deterioration than the latter.
3. Before and after heating stages the axial deformation of column was almost linear. The axial deformation of column after heating was larger than that before heating. The axial deformation of column under four-face heating specimens was greater than that under three-face heating.
1. Kodur, V. K. R., and Phan, L., “Critical factors governing the fire performance of high strength concrete systems,” Fire Safety Journal, Vol. 42, pp. 482-488, 2007.
2. Hertz, K. D., “Limits of Spalling of Fire-Exposed Concrete,” Fire Safety Journal, Vol. 38, pp. 103-116, 2003.
3. Anderberg, Y., “Spalling Phenomena of HPC and OC,” NIST Workshop on Fire Performance of Hig Strength Concrete,” 1997.
4. ACI Committee 216, “Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
5. European Committee, “Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design,” ENV 1992-1-2:1995.
6. Ellingwood, B., and Shaver, J. R., “Effects of Fire Reinforced Concrete Members,” Journal of the Structural Division, ASCE, Vol. 106, No. ST11, pp. 2151-2166, 1980.
7. Lie, T. T., and Barbaros, C., “Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns,” ACI Materials Journal, Vol. 88, No. 1, pp. 84-91, 1991.
8. 陳舜田、林英俊、楊旻森 , 「火害後鋼筋混凝土桿件之扭力行為」 ,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院營建工程技術系,台北, 1995。
9. Chan, Y. N.; Peng, G. F.; and Anson, M., “Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures,” Cement and Concrete Composites, Vol. 21, pp. 23-27, 1999.
10. Kosmas, K. S., “Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures,” Journal of Materials in Civil Engineering, ASCE, Vol. 19, No. 8, pp. 648-654, 2007.
11. Arioz, O., “Effect of Elevated Temperature on Properties of Concrete,” Fire Safety Journal, No. 42, pp. 516-522, 2007.
12. Short, N. R.; Purkiss, J. A.; and Guise, S. E., “Assessment of Fire Damaged Concrete Using Colour Image Analysis,” Construction and Building Materials, No. 15, pp. 9-15, 2001.
13. Kodur, V. K. R., and Dwaikat, M., “A Numerical Model for Predicting the Fire Resistance of Reinforced Concrete Beams,” Cement and Concrete Composites, No. 30, pp. 431-443, 2008.
14. Tan, K. H., and Yao, Y., “Fire Resistance of Reinforced Concrete Column Subjected to 1-,2-,and 3-Face Heating,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, Nov., pp. 1820-1828, 2004.
15. Tan K. H., and Yao Y., “Fire Resistance of Four-Face Heated Reinforced Concrete Column,” Journal of Structural Engineering, ASCE, Vol. 129, No. 9, pp. 1220-1229, 2003.
16. Kodur, V. K. R.; Wang, T. C.; and Cheng, F. P., “Predicting the Fire Resistance Bbehavior of High Strength Concrete Columns,” Cement and Concrete Composites, No. 26, pp. 141-153, 2004.
17. Alia, F.; Nadjaia, A.; Silcocka, C; and Abu-Tairb, A., “Outcomes of a major research on fire resistance of concrete columns,” Fire Safety Journal, No. 39, pp. 433-445, 2004.
18. 張朝輝,ANSYS熱分析教程與實例解析,中國鐵道出版社,北京, 2007
19. 博嘉科技, 有限元分析軟件-ANSYS 融會與貫通, 中國水利水電出版社, 北京, 2002。
20. 內政部建築研究所,「建築物構造防火性能驗證技術手冊」,台灣, 2008
21. 中華民國國家標準局CNS12514,「建築物構造部份耐火試驗法」,台灣, 2005
22. 黃國維, 「鋼筋混凝土梁柱複合構件承受高溫之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文, 2007。
23. 洪瑋澤, 「鋼筋混凝土梁柱複合構件承於高溫中、後之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文, 2008。
24. 劉泰慰, 「鋼筋混凝土房屋構架在高溫中、後之行為研究-普通混凝土與自充填混凝土之外柱行為」, 國立成功大學土木研究所, 碩士論文, 2009。
25. 楊毅凡 , 「鋼筋混凝土梁柱複合構件承受高溫之行為研究 ─ 梁柱接頭之承力行為」 ,碩士論文,國立成功大學土木工程研究所,碩士論文, 2007。
26. 何欣宜 , 「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究 ─ 梁柱接頭之承力行為」 ,碩士論文,國立成功大學土木工程研究所,碩士論文, 2008。
27. 葉治銘, 「鋼筋混凝土房屋構架在高溫中、後之行為研究-普通混凝土與自充填混凝土外柱接頭之行為」, 國立成功大學土木研究所, 碩士論文, 2009。
28. Lie, T. T., Rowe, T. J., Lin, T. D, “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174, 1984.
29. 陳舜田,林英俊,沈進發,林建宏, 「鋼筋混凝土構件受火害後力學行為之研究(三)」,國科會研究報告NSC76-0410-E011-13, 1990
30. 陳舜田,林英俊,沈進發,林建宏,「鋼筋混凝土構件受火害後力學行為之研究(一)」,國科會研究報告NSC76-0410-E011-04, 1987
31. 陳舜田,林英俊,沈進發,林建宏, 「鋼筋混凝土構件受火害後力學行為之研究(二)」,國科會研究報告NSC-76-0410-E-011-09, 1987
32. 楊旻森,陳舜田,林英俊,「混凝土受火害後之乾縮應變及其影響」,中華民國第二屆結構工程研討會論文集(二),南投, 1992
33. 高金盛,陳舜田”火害後鋼筋混凝土梁強度與勁度之衰減,” 中國土木水利工程學刊,第八卷,第三期,pp. 371-386, 1996
34. 許崇堯、林英俊、陳舜田,”火害後鋼筋混凝土梁柱接頭錨定鋼筋之握裹滑移特性,”中國土木水利工程學刊,第六卷,第一期,pp. 31-43, 1994
35. 林英俊,陳舜田,林慶榮,” 火害後鋼筋混凝土梁之剪力強度,”建築物火害後及災後安全評估法,” 台灣科大營建工程系列叢書,科技圖書股份有限公司,pp. 117-135, 1999
36. 高金盛,陳舜田,「火害後鋼筋混凝土構架之力學行為」, 國立臺灣工業技術學院營建工程技術研究所,博士論文, 1996。