簡易檢索 / 詳目顯示

研究生: 李怡真
Lee, Yi-Chen
論文名稱: 山葵園非點源污染負荷模式之研究
A study of non-point source model on wasabi farmland
指導教授: 溫清光
Wen, Ching-Gung
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 146
中文關鍵詞: 淋洗滲漏水質模式降雨逕流模式山葵、非點源污染
外文關鍵詞: percolation, leaching, water quality model, Rainfall-Runoff Model, wasabi, non-point source pollution
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討山葵園的非點源污染,由現場監測結果,得6場採集之地表逕流水各項水質平均濃度為:SS=511 mg/L,PO43--P=2.56 mg/L,TP=4.7 mg/L;NO3--N=1 mg/L,NH4+-N=0.13 mg/L,Org-N=0.45 mg/L,TN=1.94 mg/L。
    在地表逕流污染物年輸出量上,以模式法及回歸法推估。在模式法上,是應用降雨逕流之水文模式,配合土壤沖刷模式、溶解性營養鹽模式及沉積性營養鹽等水質模式模擬降雨期間地表逕流各污染物產量,並且以實測值率定模式中所需之參數。回歸法則以實測資料做回歸的推估,以此二法推估結果差異不大,由二法平均求得之地表逕流污染物年輸出量(單位:kg/ha-year)為:SS=597,PO4--P=4.49,TP=6.70,NO3--N=1.11,NH4+-N=0.92,Org-N=1.39,TN=3.30。
    以根區氮磷的收支平衡式及一維平流延散反應方程式(ADR),評估根區滲漏氮量及土壤累積量為667 kg N/ha-yr,而滲漏磷量及土壤累積量為243 kg P/ha-yr。
    本研究評估營養鹽污染途徑除地表逕流外,滲漏水亦為一重要的非點源污染途徑,期望建立地表逕流水及滲漏水之水質模式架構,以作為農地非點源污染推估之參考。

    This study aims at the simulation of non-point source(NPS) loading for a wasabi farmland. The model combines Distributed Rainfall-Runoff Model, soil erosion model, and nutrient model to simulate temporal variability of contamination loading during rainfall events. Furthermore, the calibration and verification process have been test in this study. On the other hand, the regression method is used based on the observed data and to compare with the results of the NPS model. The geometric mean concentration of surface runoff from 6 rainfall events is presented as follows: SS=511 mg/L, PO43--P=2.56 mg/L, TP=4.7 mg/L, NO3--N=1 mg/L, NH4+-N=0.13 mg/L, Org-N=0.45 mg/L, TN=1.94 mg/L.
    The export coefficients of surface runoff estimated by using the NPS model and the regression method. The results indicate that the two methods are similar. The export coefficients of surface runoff estimated by using the two methods indicated as(unit: kg/ha-year): SS=597, PO4--P=4.49, TP=6.70, NO3--N=1.11, NH4+-N=0.92, Org-N=1.39, TN=3.30.
    The infiltration term caused by leaching and accumulating in the soil is also evaluated by nutrient budget for the root zoon and one-dimensional advection-dispersion reaction equation (ADR). The amounts of N- and P-leaching and accumulation are 667 kg N/ha-yr and 243 kg P/ha-yr, respectively.
    This study perhaps first confirmed that the leaching form is important for the non-point source pollution except for surface runoff. This study also establishes a framework of water quality models including surface runoff and infiltration terms to be a consultation for non-point source pollution within a watershed.

    第一章 前言 1.1研究動機 1-1 1.2研究目的 1-1 1.3論文內容與流程 1-1 第二章 文獻回顧 2.1 水文模式 2-1 2.1.1 降雨-逕流 2-1 2.1.2 降雨逕流模式 2-1 2.2 水質模式 2-6 2.2.1地表逕流水質模式 2-6 2.2.2滲漏水質模式 2-12 2.3 山葵園氮的收支平衡 2-14 2.3.1 氮的損失 2-15 2.3.2 氮的獲得 2-23 2.4 山葵園磷的收支平衡 2-25 2.4.1 磷的損失 2-26 2.4.2 磷的獲得 2-27 第三章 山葵園非點源模式的推導 3.1 前言 3-1 3.2 水文模式 3-2 3.2.1 降雨逕流模式 3-2 3.3 水質模式 3-6 3.3.1 地表逕流 3-6 3.3.1.1 土壤沖刷模式 3-6 3.3.1.2 營養鹽水質模式 3-8 3.3.2 滲漏水 3-10 3.3.2.1營養鹽水質模式 3-10 3.4 營養鹽收支平衡式 3-15 3.5 山葵園非點源污染全年輸出量之估計 3-15 3.5.1 地表逕流全年污染輸出量之估計 3-15 3.5.2 滲漏水全年污染輸出量之估計 3-15 第四章 山葵園實例研究 4.1實驗場址介紹 4-1 4.1.1 實驗地點 4-1 4.1.2 實驗場址自然環境 4-2 4.2 實驗設備與方法 4-5 4.2.1 實驗設備 4-5 4.2.2 實驗方法 4-5 4.3山葵園肥料施用調查 4-7 4.4採樣結果 4-9 4.4.1 降雨事件介紹 4-9 4.4.2 採樣分析結果 4-12 4.5滲漏水實驗 4-21 4.5.1實驗用土箱 4-21 4.5.2 採樣結果 4-22 第五章 山葵園污染負荷模式之建置與應用 5.1降雨逕流模式模擬結果 5-1 5.1.1 基本資料輸入 5-1 5.1.2 模式率定 5-2 5.1.3 模式驗證 5-5 5.1.4 敏感度分析 5-9 5.2 地表逕流水質模擬結果 5-10 5.2.1 土壤沖蝕模擬結果 5-10 5.2.2 氮營養鹽模擬結果 5-14 5.2.2.1 NO3-N模擬結果 5-14 5.2.2.2 TN模擬結果 5-17 5.2.2.3 org-N模擬結果 5-20 5.2.2.4 NH3-N模擬結果 5-23 5.2.3 磷營養鹽模擬結果 5-25 5.2.3.1 PO4-P模擬結果 5-25 5.2.3.2 總磷模擬結果 5-28 5.3 滲漏水質模擬結果 5-30 5.3.1氮滲漏模擬結果 5-32 5.3.2 磷滲漏模擬結果 5-33 5.4 全年污染量估計 5-34 5.4.1全年地表逕流污染輸出量 5-34 5.4.2全年根區滲漏污染量 5-37 5.4.2.1根區氮的收支平衡 5-37 5.4.2.2 根區磷的收支平衡 5-39 第六章 結論與建議 6.1 結論 6-1 6.2 建議 6-2 參考文獻 參考-1 附錄

    1. 足立昭三,山葵栽培,東京秀潤社,1987年。
    2. 李晉豪,茶園非點源污染負荷之調查與推估,國立成功大學環境工程研究所,碩士論文,2001年7月。
    3. 林立偉,台灣地區酸性沉降之時空變化及颱風貢獻量之探討,國立成功大學環境工程研究所,碩士論文,1998年6月。
    4. 胡敏夫、羅朝村、陳森雄,山葵栽培與管理,行政院農業委員會編印,1991年。
    5. 胡敏夫、王昭月、劉慧瑛,台灣主要山葵栽培品種(系)間品質之評價,中華農業研究,41(1),頁34-42,1992年3月。
    6. 郭魁士,土壤學,之宜出版社,1997年1月修訂八版。
    7. 郭烈銘,農藥及肥料於未飽和及飽和水層中傳輸衰變過程探討,礦業技術30(2),頁105-113,1992年6月。
    8. 張尊國、余忠賢、徐明麟,德基水庫集水區非點源污染負荷之研究,第九屆環境規劃與管理研討會論文集。
    9. 陳鴻烈、王久泰、梁家柱、鄭慧玲,山葵種植與森林水環境之比較研究,2001坡地防災研討會,頁18-27,2001年3月。
    10. 陳起鳳,茶園非點源污染之模式分析研究,國立成功大學環境工程研究所,碩士論文,2002年7月。
    11. 萬鑫森譯(Daniel Hillel原著),基礎土壤物理學,國立編譯館出版,1987年。
    12. 鄔宏潘、趙震慶,全球變遷:農業生態系-台灣主要土類之土壤N2O的生成(I),行政院國家科學委員會專題研究計畫成果報告,1994年1月10日。
    13. 黃國禎、黃俊德、徐森雄、吳嘉俊,陡坡地逕流與滲漏水質之初步研究,中華水土保持學報,25(2),頁83-93,1994年。
    14. 溫清光,曾文水庫水質調查及改善計劃,經濟部水利處南區水資源局,2001年6月。
    15. 劉光武,分佈型降雨-逕流模式之研究,國立成功大學水利工程研究所,碩士論文,1991年6月。
    16. 劉興旺、郭幸榮,森林生態系的脫氮作用,國立台灣大學農學院實驗林研究報告,7(1),頁33-42,1993年3月。
    17. 謝昭賢、洪嘉謨,農業經營系統對地下水負荷影響模式(GLEAMS),水土保持學報28(4):頁85-100,1996年。
    18. 謝昭賢,牧草地管理措施對逕流特性及水質之影響,國立中興大學水土保持研究所,博士論文,1999年。
    19. 謝豪榮、李正義、陳鴻烈,阿里山地區林地山葵種植對水土環境衝擊之研究,2001年6月。
    20. 魏敏裕、張尊國,集水區非點源污染之水質模擬,第二屆水源水質保護區環境管理研討會論文集,1993年四月。
    21. 蘇柏樺,水稻田土壤中脫氮作用之抑制作用,國立台灣大學農業化學研究所,碩士論文,1997年6月。

    1. Andersen, H. E., B. Kronvang, and S. E. Larsen. Agricultural practices and diffuse nitrogen pollution in Denmark: empirical leaching and catchment models. Water Science and Technology Volume: 39, Issue: 12, pp. 257-264. 1999.
    2. Beasley and Huggins. ANSERS User’s Manual. 1981.
    3. Hansen, B., E. S. Kristensen, R. Grant, H. Høgh-Jensen, S. E. Simmelsgaard, and J. E. Olesen. Nitrogen leaching from conventional versus organic farming systems-a systems modelling approach. European Journal of Agronomy 13 , pp.65–82. 2000.
    4. Christensen, B. T., and A. E. Johnston. Soil organic matter and soil quality-lessons learned from long-term field experiments at Askov and Rothamsted. In: Gregorich, E.G., Carter, M.R. (Eds.), Soil Quality for Crop Production and Ecosystem Heath. In: Developments in Soil Science, vol. 25. Elsevier, Amsterdam, pp. 399–430. 1997.
    5. Grant, D. M., and B. D. Dawson. Isco open channel flow measurement handbook. Isco, Inc. 1997.
    6. EPIC Documentation, http://www.brc.tamus.edu/epic/documentation/index.html
    7. Focht, D. D. The effect of temperature, pH, and aeration on the production of nitrous oxide and gaseous nitrogen-A zero-order kinetic model. Soil Science: 118, pp.173-179. 1974.
    8. Frere, M. H., J. D. Ross, and L. J. Lane. The nutrient submodel. pp. 65-87 in Knisel, W.G., ed., CREAMS: A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems . Washington, D.C.: U.S. Department of Agriculture, Agricultural Research Service Conservation Research Report No. 26. 1980.
    9. Ghadiri, H., and C. W. Rose. Modeling Chemical Transport in Soils:natural and applied contaminants. LEWIS publishers. 1992.
    10. Schnoor, J. L. Environmental Modeling:Fate and Transport of Pollutants in Water, Air, and Soil. Wiley. Interscience publication. 1996.
    11. Knisel, W. G.., R. A. Leonard, F. M. Davis, and A. D. Nicks. GLEAMS Version 2.10. Part Ⅲ. User manual. 1993.
    12. Meyer, L. D., and W. H. Wischmeier. Mathematical Simulation of the Processes of Soil Erosion by Water, Transaction of ASAE, 12(6), pp. 754-758. 1969.
    13. Mogge, B.; E. A. Kaiser, and J. C. Munch. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhöved Lake region: influence of organic fertilizers and land-use. Soil Biology & Biochemistry Volume: 31, Issue: 9, pp. 1245-1252.August, 1999.
    14. Müller-Wohlfeil, D. I., J. O. Jørgensen, B. Kronvang, and L. Wiggers. Linked catchment and scenario analysis of nitrogen leaching and loading: a case-study from a Danish catchment-fjord system, Mariager Fjord. Physics and Chemistry of the Earth, Parts A/B/C Volume: 27, Issue: 9-10, pp. 691-699. 2002.
    15. Nommik, H. Investigations on denitrification in soil. Acta Agr. Scand.: 6, pp.195-228. 1956.
    16. Bedient, P. B., H. S. Rifai, and C. J. Newell. Ground water contamination:Transport and remediation. PTR Prentice-Hall, Inc. 1994.
    17. Robertson, G. P., and J. M. Tiedje. Denitrification and nitrous oxide production in successional and old-growth Michigan forests. Soil Science Society of America Journal: 48, pp. 383-389. 1984.
    18. Sexstone, A. J., T. B. Parkin, and J. M. Tiedje. Temporal response of soil denitrification rates to rainfall and irrigation. Soil Sci. Soc. Am. J.: 49, pp. 99-103. 1985.
    19. Sprent, J. I. The Ecology of the Nitrogen Cycle. Cambridge Univ. Press. pp.49-66. 1987.
    20. Simmelsgaard, S. E. The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil. Soil Use Manag. 14, pp.30–36. 1998.
    21. Sánchez, L., J. A. Díez, A. Vallejo, and M. C. Cartagena. Denitrification losses from irrigated crops in central Spain. Soil Biology and Biochemistry Volume: 33, Issue: 9, pp. 1201-1209.July, 2001.
    22. Stagnitti, F., Ling Li, A. Barry, G. Allinson, J. Y. Parlange, T. Steenhuis, and E. Lakshmanan. Modeling solute transport in structured soils: performance evaluation of the ADR and TRM models. Mathematical and Computer Modelling Volume: 34, Issue: 3-4, August, pp. 433-440. 2001.
    23. Strong, D. T., and I. R. P. Fillery. Denitrification response to nitrate concentrations in sandy soils. Soil Biology & Biochemistry: 34, pp. 945-954. 2002.
    24. Van Genuchten, M. Th. Convective-dispersive transport of solutes involved in Sequential first-order decay reactions, Computer & Geosciences, Vol. 11, No. 2, pp.129-147.
    25. Wijler, J., and C. C. Delwiche. Investigations on the denitrifying processes in soil. Plant and Soil: 5, pp. 155-169. 1954.
    26. Ritter, W. F., A. Shirmohammadi. Agricultural Nonpoint Source Pollution:Watershed Management and Hydrology. LEWIS publishers. 2001.
    27. Williams, J. R., C. A. Jones, and P. T. Dyke. The EPIC model and its application. pp. 111-121 In Proc. ICRISAT-IBSNAT-SYSS Symp. 1984.

    下載圖示 校內:立即公開
    校外:2003-08-08公開
    QR CODE