簡易檢索 / 詳目顯示

研究生: 黃韋翔
Huang, Wei-Hsiang
論文名稱: 週期排列之橢圓地震超材料
Seismic metamaterials with a periodic array of elliptical cylinders
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 135
中文關鍵詞: 地震超材料橢圓平面波展開法局部共振等效係數帶隙
外文關鍵詞: seismic metamaterials, elliptical cylinders, plane wave expansion, local resonance, effective modulus, bandgaps
相關次數: 點閱:52下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討超材料的幾何可調性,特別是從圓形內含物擴展至橢圓形內含物。參考林宗穎(2023)的研究,進一步探討橢圓形內含物在不同長短軸比值下的頻散曲線變化及局部共振消能機制。發現橢圓超材料因長短軸的差異,發展出圓形超材料所不具有的方向性及可調性。然而,林宗穎(2023)提出的橢圓超材料模型在改變幾何形狀時採取固定長軸長度同時縮短短軸的方式,會導致材料體積比產生變化,進而導致體積比亦成為影響局部共振頻率及帶寬的因素之一。因此,本論文改良林宗穎(2023)提出的橢圓超材料模型,使單元結構在改變幾何形狀時始終保持相同材料體積比,以利更專注於探討幾何形狀對超材料消能機制的直接影響。首先利用平面波展開法生成頻散圖,驗證體積比對頻帶的影響,並使用有限元素軟體COMSOL計算橢圓超材料的各種等效係數,分析不同共振模態下的消能機制及帶隙隨長短軸比值的變化。接著,通過半全域模擬進一步探討橢圓超材料對縱波及剪切波的衰減效果,嘗試找出最佳消能組合。
    本論文展示了橢圓超材料在幾何可調性和方向性上的優勢,通過詳細的模擬和分析,證明其在局部共振頻率及帶寬調控上的潛力,為未來超材料的設計和應用提供了新的思路和方法。

    In this thesis, we investigate the geometric tunability of metamaterials, extending the study from circular inclusions to elliptical inclusions. Our findings indicate that elliptical metamaterials exhibit superior tunability compared to circular metamaterials due to the differences in the major and minor axes. We build upon the elliptical metamaterial model proposed by Lin(2023), ensuring that the unit cells maintain a consistent material volume fraction when altering geometric shapes. This approach allows us to focus more precisely on the direct impact of geometric shape on the energy dissipation mechanisms of metamaterials. Firstly, we employ the plane wave expansion method to generate dispersion diagrams, verifying the impact of volume fraction on the bandgaps. Secondly, we use finite element method to calculate various effective modulus of elliptical metamaterials, analyzing the energy dissipation mechanisms and the variations in bandgaps under different resonant modes as the aspect ratio changes. Subsequently, we use numerical simulations to explore the attenuation effects of elliptical metamaterials on longitudinal and shear waves, attempting to identify the optimal energy dissipation combination. Lastly, beyond demonstrating the advantages of elliptical metamaterials in terms of geometric tunability and directionality, we also prove their potential in controlling local resonance frequency and bandwidth. These provide new insights and methods for the future design and application of metamaterials.

    中文摘要 i Abstract iii 誌謝 ix 目錄 xi 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 論文簡介 6 第二章 平面波展開法與週期排列橢圓超材料 9 2.1 平面波展開法 9 2.2 材料不同體積比對局部共振頻率及帶寬之影響 17 2.3 橢圓超材料之單元結構 24 第三章 週期排列橢圓超材料局部共振消能機制 27 3.1 局部共振消能機制 27 3.2 等效質量密度ρ^eff 28 3.3 等效轉動慣量I^eff 39 3.4 等效縱波模量M^eff 48 3.5 等效剪切模量μ^eff 53 第四章 週期排列橢圓超材料半全域模擬 59 4.1 半全域頻域模擬與模型 59 4.2 ΓX向半全域模擬 60 4.3 ΓY向半全域模擬 69 4.4 交錯排列半全域模擬 80 第五章 結論與未來展望 87 5.1 結論 87 5.2 未來展望 90 參考文獻 93 附錄A:三維平面波展開與週期排列材料 97 附錄B:等效質量密度與等效轉動慣量解析式推導 105

    Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., & Guenneau, S., Clamped seismic metamaterials: ultra-low frequency stop bands. New Journal of Physics 19, 063022 (2017).

    Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S., & Guenneau, S., Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters 8, 30-37 (2016).

    Achenbach, J., Wave Propagation in Elastic Solids, (Elsevier, 1973).

    Alù, A., & Engheta, N., Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques 52, 199-210 (2004).

    Ashcroft, N., Mermin, N., & Smoluchowski, R., Solid State Physics. Physics Today 30, 61-65 (1977).

    Bloch, F., Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik 52, 555-600 (1929).

    Brûlé, S., Enoch, S., & Guenneau, S., Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A 384, 126034 (2020).

    Brûlé, S., Javelaud, E., Enoch, S., & Guenneau, S., Experiments on seismic metamaterials: molding surface waves. Physical Review Letters 112, 133901 (2014).

    Cao, Y., Hou, Z., & Liu, Y., Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A 327, 247-253 (2004).

    Dal Poggetto, V. F., & Serpa, A. L., Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. International Journal of Mechanical Sciences 184, 105841 (2020).

    Dal Poggetto, V. F., & Serpa, A. L., Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. Journal of Sound and Vibration 495, 115909 (2021).

    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X., Ultrasonic metamaterials with negative modulus. Nature Materials 5, 452-456 (2006).

    Favier, E., Nemati, N., & Perrot, C., Two-component versus three-component metasolids. The Journal of the Acoustical Society of America 148, 3065-3074 (2020).

    Favier, E., Nemati, N., Perrot, C., & He, Q.C., Generalized analytic model for rotational and anisotropic metasolids. Journal of Physics Communications 2, 035035 (2018).

    Graff, K. F., Wave Motion in Elastic Solids. (Courier Corporation, 2012).

    Hill, R., Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357-372 (1963).

    Huang, H. H., & Sun, C. T., Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. The Journal of the Acoustical Society of America 132, 2887-2895 (2012).

    Huang, H. H., & Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11, 013003 (2009).

    Huang, H. H., Sun, C. T., & Huang, G. L., On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science 47, 610-617 (2009).

    Huang, H., & Sun, C., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine 91, 981-996 (2011).

    Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., & Djafari-Rouhani, B., Theory of acoustic band structure of periodic elastic composites. Physical Review B 49, 2313 (1994).

    Lai, Y., & Zhang, Z. Q., Large band gaps in elastic phononic crystals with air inclusions. Applied Physics Letters 83, 3900-3902 (2003).

    Lai, Y., Wu, Y., Sheng, P., & Zhang, Z. Q., Hybrid elastic solids. Nature Materials 10, 620-624 (2011).

    Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K., Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters 104, 054301 (2010).

    Liu, X. N., Hu, G. K., Huang, G. L., & Sun, C. T., An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters 98, 251907 (2011).

    Liu, Z., Chan, C. T., & Sheng, P., Analytic model of phononic crystals with local resonances. Physical Review B 71, 014103 (2005).

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P., Locally resonant sonic materials. Science 289, 1734-1736 (2000).

    Miniaci, M., Krushynska, A., Bosia, F., & Pugno, N. M., Large scale mechanical metamaterials as seismic shields. New Journal of Physics 18, 083041 (2016).

    Mavko, G., Mukerji, T., & Dvorkin, J., The Rock Physics Handbook, (Cambridge University Press, 2020).

    Palermo, A., Krödel, S., Marzani, A., & Daraio, C., Engineered metabarrier as shield from seismic surface waves. Scientific Reports 6, 1-10 (2016).

    Shen, X., Chen, M., Lu, W., & Li, L., Using P wave modulus to estimate the mechanical parameters of rock mass. Bulletin of Engineering Geology and the Environment 76, 1461-1470 (2017).

    Sun, C.T., & Vaidya, R. S., Prediction of composite properties from a representative volume element. Composites Science and Technology 56, 171-179 (1996).

    Wang, Y. Z., Li, F. M., Huang, W. H., & Wang, Y. S., Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter 19, 496204 (2007).

    Wu, Y., Lai, Y., & Zhang, Z.Q., Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters 107, 105506 (2011)

    李冠慧,地震超材料設計之減震模擬及效益評估,成功大學土木工程學系碩士論文 (2019)。

    林宗穎,週期排列之橢圓及粽子結構超材料之共振帶隙與消能機制,成功大學土木工程學系碩士論文 (2023)。

    陳靖衡,曲率對週期排列諧振器共振板帶隙的影響,成功大學土木工程學系碩士論文 (2022)。

    彭昱翔,週期性微極彈性材料之等效參數數值模擬,成功大學土木工程學系碩士論文 (2014)。

    寧彥傑,具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文 (2016)。

    寧彥傑,具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文 (2016)。

    趙乙謙,預應力與阻尼系統對局部共振薄板之撓曲波帶隙的影響,成功大學土木工程學系碩士論文 (2021)。

    簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震技術—地震超材料之設計與分析,中國土木水利工程學刊,Vol. 31, pp. 395–410 (2019)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE