| 研究生: |
謝旻軒 Xie, Min-Hsuan |
|---|---|
| 論文名稱: |
疲勞分析應用於離岸風機套管式支撐結構設計 Fatigue Analysis and Applications in Design of the Jacket-type Offshore Wind Turbine |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 地震 、應力集中係數 、疲勞設計 、雨流法 、線性毀損律 、布羅伊登法 、套管式離岸風機 、高強度鋼 |
| 外文關鍵詞: | earthquake, SCF, fatigue design, rainflow method, Miner’s rule, Broyden method, jacket-type offshore wind turbine, high strength steel |
| 相關次數: | 點閱:218 下載:36 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前國內針對離岸風機設計尚未有完整的設計規範,本研究根據IEC64100-3所提供之設計載重組合,並合理假設相關數據,除了考慮風、海浪、海流及水位,因台灣地理位置,更進一步考慮地震。此外根據DNVGL-RP-C203發展離岸風機結構疲勞設計程式,先由設計負載組合所得到的結構設計結果,帶入疲勞負載組合,得到桿件內力歷時,判斷其節點接頭型態及應力集中係數,簡化計算桿件斷面的集中應力,利用雨流法計數及線性毀損律,並由不同的疲勞負載及風速機率分布,計算其權重,疊加即可分析出風機壽命。以離岸風機設計壽命20年為例,當分析結果小於目標值時,將利用布羅伊登法,計算桿件斷面厚度,分析出來的結果將會滿足疲勞負載組合及設計載重組合。本研究針對套管式離岸風機,並依據規範完整分析設計載重組合,並探討高強度鍛造鋼材的總用鋼量,可作為工程設計之參考。電腦輔助分析成是由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。
At present, there is no complete design software for offshore wind turbine design in Taiwan. Based on the design load cases provided by IEC64100-3 and reasonable assumptions, in addition to considering the wind, waves, currents and water level, this study takes the geographical location of Taiwan further considers the earthquake. In addition, according to DNVGL-RP-C203 to develop the fatigue design program of offshore fan structure, the design results of the ultimate design load cases are firstly introduced into the fatigue design load case to obtain the internal force of each element and determine the joint type and stress concentration factor (SCF) to simplify the calculation of the concentrated stress of the connect section. Second, using rainflow method count and Miner's rule, and different fatigue design load case probability and wind speed distribution, calculate the weight to get fatigue lifetime. Finally, take offshore wind turbine design lifetime as 20 years, when the analysis result is less than the target value, the Broyden method will be used to calculate the section thickness. The analysis result will reach the fatigue design load case and the ultimate design load cases simultaneously. In this study, according to the standards, a complete design load case can be analysis and design jacket-type offshore wind turbine, and the total design steel weight with high strength forging steel, which can be used as a reference for offshore wind turbine designer. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.
1. IEC 61400-1, In International Standard Wind turbines – Part 1: Design Requirements (3rd ed.). (2005), International Electrotechnical Commission.
2. ISO 19902, In Petroleum and Natural Gas Industries–Fixed Steel Offshore Structures. (2007), International Organization for Standardization: Switzerland.
3. IEC 61400-3, In International Standard Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines (1st ed.). (2009), International Electrotechnical Commission.
4. Design of Offshore Structures General (LRFD Method), in DNV OS-C101. (2011), Det Norske Veritas: Norway.
5. DNV-OS-J101, In Design Of Offshore Wind Turbine Structures. (2014), Det Norske Veritas: Norway.
6. DNVGL-RP-0034, In Steel Forgings for Subsea Applications. (2015), Det Norske Veritas: Norway.
7. DNVGL-ST-0437, In Loads and Site Conditions for Wind Turbines. (2016), Det Norske Veritas: Norway.
8. DNVGL-RP-C203, In Fatigue Design of Offshore Steel Structures. (2016), Det Norske Veritas: Norway.
9. Abhinav, K.A. and N. Saha, Nonlinear Dynamical Behaviour of Jacket Supported Offshore Wind Turbines in Loose Sand. Marine Structures, (2018). 57: p. 133-151.
10. Al Shamaa, D. and K. Geissler, Generalized Consideration of Endurance Limit for Fatigue Stress Analysis by Means of Fatigue Life Curves. Stahlbau, (2013). 82(2): p. 87-96.
11. AlHamaydeh, M., S. Barakat, and O. Nasif, Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm with Domain-Trimming. Mathematical Problems in Engineering, (2017): p. 14.
12. Anders, D., et al., Investigating a Flexible Wind Turbine Using Consistent Time-Stepping Schemes. Engineering Computations, (2012). 29(7-8): p. 661-688.
13. Borg, M., M. Collu, and A. Kolios, Offshore floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part II: Mooring Line and Structural Dynamics. Renewable & Sustainable Energy Reviews, (2014). 39: p. 1226-1234.
14. Brennan, F. and I. Tavares, Fatigue design of offshore steel mono-pile wind substructures. Proceedings of the Institution of Civil Engineers-Energy, (2014). 167(4): p. 196-202.
15. C. Noordhoek and J.D. Back, Steel in Marine Structures: Proceedings of the 3rd International ECSC Offshore Conference on Steel in Marine Structures (SIMS'87), Delft, the Netherlands, June 15-18, 1987. (1987): Elsevier Publishing Company.
16. Chakrabarti, S.K., Nonlinear Methods in Offshore Engineering. (1990), Netherlands: Elsevier.
17. Chiang, Yao-Ting, Ultimate Load Analysis and Design of the Jacket-Type Offshore Wind Turbine under Extreme Environmental Conditions. NCKU,(2017)
18. Choi, E., et al., Optimal Design of Floating Substructures for Spar-Type Wind Turbine Systems. Wind and Structures, (2014). 18(3): p. 253-265.
19. Christiansen, S., T. Bak, and T. Knudsen, Damping Wind and Wave Loads on a Floating Wind Turbine. Energies, (2013). 6(8): p. 4097-4116.
20. Damgaard, M., et al., Effects of Soil-Structure Interaction on Real Time Dynamic Response of Offshore Wind Turbines on Monopiles. Engineering Structures, (2014). 75: p. 388-401.
21. Dong, W.B., T. Moan, and Z. Gao, Fatigue Reliability Analysis of the Jacket Support Structure for Offshore Wind Turbine Considering the Effect of Corrosion and Inspection. Reliability Engineering & System Safety, (2012). 106: p. 11-27.
22. Efthymiou, M., Development of SCF Formulae and Generalised Influence Functions for Use in Fatigue Analysis. Recent Developments in Tubular Joint Technology, OTJ, (1988).
23. El-Reedy, M.A., Offshore Structures: Design, Construction And Maintenance. (2012): Gulf Professional Publishing.
24. El-Reedy, M.A., Offshore Structures Design, in Marine Structural Design Calculations. (2015), Butterworth-Heinemann: Oxford. p. p85-187.
25. Gentils, T., L. Wang, and A. Kolios, Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm. Applied Energy, (2017). 199: p. 187-204.
26. Gupta, A. and R.P. Singh, Fatigue Behaviour of Offshore Structures. (1986): Springer Berlin Heidelberg.
27. Hassel, T., et al., Economical Joining of Tubular Steel Towers for Wind Turbines Employing Non-Vacuum Electron Beam Welding for High-Strength Steels in Comparison With Submerged Arc Welding. Welding in the World, (2013). 57(4): p. 551-559.
28. Jonkman, J.M. and M.L. Buhl Jr, Fast User's Guide-Updated August 2005. (2005), National Renewable Energy Laboratory (NREL), Golden, CO.
29. Keindorf, C. and P. Schaumann, Sandwichtowers for Wind Turbines With High Strength Steel and Core Materials. Stahlbau, (2010). 79(9): p. 648-659.
30. Krathe, V.L. and A.M. Kaynia, Implementation of a Non-Linear Foundation Model for Soil-Structure Interaction Analysis of Offshore Wind Turbines In FAST. Wind Energy, (2017). 20(4): p. 695-712.
31. Larsen, T.J. and A.M. Hansen, How 2 HAWC2, the user's manual. (2007).
32. Lee, J.C., et al., An Optimal Sub-Structure for a TLP-Type Wind Turbine Based on Neuro-Response Surface Method. Journal of Marine Science and Technology, (2015). 20(4): p. 604-616.
33. Lee, Y.-L. and T. Tjhung, Rainflow Cycle Counting Techniques, in Metal Fatigue Analysis Handbook. (2012), Butterworth-Heinemann: Boston. p. p89-114.
34. Li, X.F., et al., Failure Analysis of High Strength Steel Bar Used in a Wind Turbine Foundation. Journal of Failure Analysis and Prevention, (2015). 15(2): p. 295-299.
35. Muskulus, M., Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis. Energies, (2015). 8(12): p. 14026-14039.
36. Myhr, A., K.J. Maus, and T.A. Nygaard. Experimental and Computational Comparisons of the OC3-Hywind and Tension-Leg-Buoy (TLB) Floating Wind Turbine Conceptual Designs. In The Twenty-First International Offshore And Polar Engineering Conference. (2011). International Society of Offshore and Polar Engineers.
37. Negm, H.M. and K.Y. Maalawi, Structural design optimization of wind turbine towers. Computers & Structures, (2000). 74(6): p. 649-666.
38. Press, W., et al., Numerical Recipes in Fortran 77. Multidimensional Secant Methods: Broyden’s Method. (1997).
39. Saini, D.S., D. Karmakar, and S. Ray-Chaudhuri, A Review of Stress Concentration Factors in Tubular and Non-Tubular Joints for Design of Offshore Installations. Journal of Ocean Engineering and Science, (2016). 1(3): p. 186-202.
40. Schafhirt, S., D. Zwick, and M. Muskulus, Two-Stage Local Optimization of Lattice Type Support Structures for Offshore Wind Turbines. Ocean Engineering, (2016). 117: p. 163-173.
41. Schaumann, P., S. Lochte-Holtgreven, and S. Steppeler, Special Fatigue Aspects in Support Structures of Offshore Wind Turbines. Materialwissenschaft Und Werkstofftechnik, (2011). 42(12): p. 1075-1081.
42. Tran, A.T., et al., Resistance of Cold-Formed High Strength Steel Circular and Polygonal Sections - Part 1: Experimental investigations. Journal of Constructional Steel Research, (2016). 120: p. 245-257.
43. Wang, K.P., et al., Fatigue Damage Characteristics of a Semisubmersible Type Floating Offshore Wind Turbine at Tower Base. Journal of Renewable and Sustainable Energy, (2016). 8(5).
44. Wang, W.H., et al., Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine under Seismic, Wind, Wave, and Current Loads. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, (2017). 139(3): p. 17.
45. Wang, Y.F., et al., Failure Analysis of Pre-Stressed High Strength Steel Bars Used in a Wind Turbine Foundation: Experimental and FE simulation. Materials and Corrosion-Werkstoffe Und Korrosion, (2016). 67(4): p. 406-419.
46. Wei, K., A.T. Myers, and S.R. Arwade, Dynamic Effects in the Response Of Offshore Wind Turbines Supported by Jackets under Wave Loading. Engineering Structures, (2017). 142: p. 36-45.
47. Yang, H.Z. and Y. Zhu, Robust Design Optimization of Supporting Structure of Offshore Wind Turbine. Journal of Marine Science and Technology, (2015). 20(4): p. 689-702.
48. Yeter, B., Y. Garbatov, and C.G. Soares, Fatigue Damage Assessment of Fixed Offshore Wind Turbine Tripod Support Structures. Engineering Structures, (2015). 101: p. 518-528.
49. Yin, L.L., K.H. Lo, and S.S. Wang, Effect of Pile-Soil Interaction on Structural Dynamics of Large Moment Magnitude-Scale Offshore Wind Turbines in Shallow-Water Western Gulf of Mexico. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, (2015). 137(6): p. 11.
50. Yin, L.L., K.H. Lo, and S.S. Wang, Effects of Blade Pitch, Rotor Yaw, and Wind-Wave Misalignment on a Large Offshore Wind Turbine Dynamics in Western Gulf of Mexico Shallow Water in 100-Year Return Hurricane. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, (2017). 139(1): p. 10.
51. Zhang, L.W. and X. Li, Dynamic Analysis of A 5-MW Tripod Offshore Wind Turbine by Considering Fluid-Structure Interaction. China Ocean Engineering, (2017). 31(5): p. 559-566.
52. Zhao, R.Y., et al., Fatigue Distribution Optimization for Offshore Wind Farms Using Intelligent Agent Control. Wind Energy, (2012). 15(7): p. 927-944.
53. Zuo, H.R., K.M. Bi, and H. Hao, Using Multiple Tuned Mass Dampers To Control Offshore Wind Turbine Vibrations under Multiple Hazards. Engineering Structures, (2017). 141: p. 303-315.
54. 台灣電力公司,風力發電。網址:http://www.taipower.com.tw