| 研究生: |
郭銓哲 Kuo, Che-Chuan |
|---|---|
| 論文名稱: |
低溫共燒陶瓷微液滴產生器之研製 Fabrication of micro-droplet generators in low temperature co-fired ceramics |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 低溫共燒陶瓷 、液滴產生器 、雷射鑽孔 、毛細不穩定性 |
| 外文關鍵詞: | LTCC, droplet generator, laser drilling, capillary instability |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液柱受到軸向擾動時,擾動會沿著液柱下游成長,最後將液柱分解成一顆顆液滴,此現象稱為毛細不穩定現象,本研究針對此現象,以LTCC為材料,製作出可產生單一粒徑液滴與多種粒徑液滴的微液滴產生器。
LTCC液滴產生器以壓電片帶動LTCC薄板產生振動,產生之振動傳遞給由噴嘴噴出之液柱,最後斷裂形成液滴。液滴產生器的噴嘴以CO2雷射加工製作而成,本研究藉由挑選合適成分的LTCC與調整雷射功率,減少玻璃結晶堆積的狀況,並利用雷射聚焦特性,成功加工出不同尺寸的噴嘴。實驗結果顯示,液滴粒徑與致動器的振動頻率、噴嘴直徑及流體流速有關。在有效的頻率範圍內,液滴粒徑與理論值頗為吻合。
When a liquid jet experiences axisymmetric disturbance, the disturbance grows in space, moves downstream, and eventually breaks up the jet into droplets. The phenomenon is called capillary instability, also known as Rayleigh breakup. Based on this instability, the present study develops droplet generators made of low temperature co-fired ceramics (LTCC). Both the monodisperse and multi-size droplet generators are successfully fabricated.
The LTCC generator is driven by a piezoelectric disc attached directly on a LTCC diaphragm to provide the necessary disturbance. A backpressure is provided to the chamber of the generator such that a liquid jet can be formed steadily through a nozzle. Nozzles with different diameters are manufactured successfully by CO2 laser drilling. It is shown that the proportion of glass in the LTCC green tape and the parameters of laser drilling are key factors in fabricating the nozzle. Results show that the droplet sizes depend on excitation frequency, nozzle diameter and jet velocity. In the range of working frequency, the sizes of the droplets agree well with theoretical predictions.
[1]Savart, F., Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi, Ann. Chim., 53, 337-386,1833
[2]Lord Rayleigh, J. W. S., On the instability of jets, Proceedings of the London Mathmetical Society, 10, 4-13, 1878
[3]Lord Rayleigh, J. W. S., On the capillary phenomena of jets, Pro. R. Soc. Lond., 29, 71-97, 1879
[4]Lord Rayleigh, J. W. S., On the instability of cylinder of viscous liquid under capillary forces, Pilos. Mag., 34, 145-154, 1892
[5]Weber, C., Zum Zerfall eines Flüssigkeitsstrahles, Zeitschrift für Angewandte Mathematik und Mechanik, 11, 136-154, 1931
[6]Tomotika, S., On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid, Proc. R. Soc. Lond. A, 150, 322–337, 1935
[7]Keller, J.B., Rubinow, S. I. & Tu, Y. O., Saptial instability of a jet, Phys. Fluids, 16, 2052-2055, 1973
[8]Leib, S. J. & Goldstein, M. E., Convective and absolute instability of a viscous liquid jet, Phys. Fluids, 29, 952–954, 1986
[9]Goedde, E. F. & Yuen, M. C., Experiments on liquid jet instability, J. Fluid Mech., 40, 495–511, 1970
[10]Yuen, M. C., Non-linear capillary instability of a liquid jet, J. Fluid Mech., 33, 151-168, 1968
[11]Pimbley, W. T. & Lee, H.C., Satellite droplet formation in a liquid jet, IBM J. Res. Dev., 21, 21–30, 1977
[12]Chaudhary, K. C. & Maxworthy, T., The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation, J. Fluid Mech., 96, 275–286, 1980
[13]Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control, J. Fluid Mech., 96, 287–298, 1980
[14]Vassallo, P. & Ashgriz, N., Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A, 433, 269–286, 1991
[15]Orme, M. & Muntz, E. P., The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation, Phys. Fluids A, 2(7), 1124–1140, 1990
[16]Orme, M., Willis, K. & Nguyen, T.-V., Droplet patterns from capillary stream breakup, Phys. Fluids A, 5(1), 80–90, 1993
[17]Chaudhary, K. C. & Redekopp, L. G., The nonlinear capillary instability of a liquid jet. Part 1, Theory. J. Fluid Mech., 96, 257–274, 1980
[18]Nayfeh, A. H., Non-linear stability of a liquid jet, Phys. Fluids, 13, 841–847, 1970
[19]Rutland, D. F. & Jameson, G. J., Theoretical prediction of the size of drops form in the breakup of capillary jets, Chem. Eng. Sci., 25, 1689-1698, 1970
[20]Lafrance, P., Nonlinear breakup of a laminar liquid jet, Phys. Fluids, 18, 428–432, 1975
[21]Bogy, D. B., Drop formation in a circular liquid jet, Ann. Rev. Fluid Mech., 11, 207–228, 1979
[22]Lin, S. P. & Reitz, R. D., Drop and spray formation from a liquid jet, Ann. Rev. Fluid Mech., 30, 85–105, 1998
[23]Elmqvist, R., Measuring instrument of the recording type, US patent, 2,566,433
[24]Sweet, R. G., High frequency recording with electrostatically deflected ink jets, Rev. Sci. Instrum., 36, 131-136, 1965
[25]Buehner, W. L., Hill, J. D. & Woods, J. W., Application of ink-jet technology to a word processing output printer, IBM J. Res. Dev., 21, 2-9, 1977
[26]Zoltan, S. I., Pulsed droplet ejecting system, US patent, 3,683,212
[27]Kyser, E. L. & Sears, S. B., Method and apparatus for recording with writing fluids and drop projection means therefor, US patent, 3,946,398
[28]Endo, I., Saito, S., Nakagiri, T. & Ohno, S., Liquid jet recording process and apparatus therefor, UK patent, 2,007,162
[29]Vaught, J. L., Cloutier, F. L., Donald, D. K., Meyer, J. D., Tacklind C. A. & Taub, H. H., Thermal ink jet printer, US patent, 4,490,728
[30]Le, H. P., Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol., 42, 49-62, 1998
[31]Brünahl, J. & Grishin, A.M., Piezoelectric shear mode drop-on demand inkjet actuator, Sens. Actuators A Phys., 101, 371-382, 2002
[32]Ben-Tzvi, P. & Rone, W., Microdroplet generation in gaseous and liquid environment, Microsyst. Technol., 16, 333-356, 2010
[33]Ho, C. W., Chance, D. A., Bajorek, C. & Acosta, R. E., The thin-film module as a high-performance semiconductor package, IBM Journal of Research and Development, 26, 286-296, 1982
[34]Palmer, E. G. & Newton, C. M., 3-D packaging using low temperature cofired ceramics(LTCC), International Journal of Microcircuits and Electronic Packaging, 16, 279-284, 1993
[35]Gongora-Rubio, M. R., Solá-Laguna, L. M., Moffet, P. J. & Santiago-Avilés, J. J., The utilization of low temperature co-fired ceramics(LTCC-ML) technology for meso-scales EMS, a simple thermistor based flow sensor, Sensors and actuators A-Physical, 73, 215-221, 1999
[36]Wu, M. H. & Yetter, R. A., Development and analysis of a LTCC micro stagnation-point flow combustor, Journal of Micromechanics and Microengineering, 18, pp.125016, 2008
[37]Donald Plumlee, J.S., Development of micro-nozzle and ion mobility spectrometer in LTCC, 2004 IEEE Workshop on Microelectronics and Electron Devices, 95-98, 2004
[38]Sobocinski, M., Juuti, J., Jantunen, H. & Golonka, L., Piezoelectric unimorph valve assembled on an LTCC substrate, Sensors and actuators A-Physical, 149, 315-319, 2009
[39]Gongora-Rubio, M. R., Espinoza-Vallejos, P., Sola-Laguna, L. & Santiago-Avilés, J. J., Overview of low temperature co-fired ceramics tape technology for meso-system technology(MsST), Sensors and Actuators A, 89, 222-241, 2001
[40]Jurkow, D., Roguszczak, H. & Golonka, K., Cold chemical lamination of ceramic green tapes, Journal of European Ceramic Society, 29, 703-709, 2009
[41]Ulmke, H., Wriedt, T. & Bauckhage, K., Piezoelectric droplet generator for the calibration of particle-sizing instruments, Chem. Eng. Technol., 24, 265-268, 2001
[42]Cooley, P., Wallance, D. & Antohe, B., Applications of ink-jet printing technology to bioMEMS and microfluidic systems, Proc. SPIE Conf. Microfluid BioMEMS, 4560, 177-188, 2001
[43]Ashgriz, N., Handbook of Atomization and Sprays, Springer, ?, 2011
[44]Brenn, G., On the controlled production of sprays with discrete polydisperse drop size spectra, Chem. Eng. Sci., 55, 5437–5444, 2000
[45]Haenlein, A., Disintegration of a liquid jet, NACA-TM-659, 1931
[46]v. Ohensorge, W., Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen, Zeitschrift für Angewandte Mathematik und Mechanik, 16, 355-358, 1936
[47]Miesse, C. C., Correlation of experiment data on the disintegration of liquid jet, Ind. Eng. Chem., 47(9), 1690-1701, 1955
[48]Reitz, R. D., Atomization and other breakup regimes of a liquid jet, Ph. D. Thesis, Princeton University, 1978
[49]Kita, J., Dziedzic, A., Golonka, L. J. & Zawada, T., Laser treatment of LTCC for 3D structures and elements fabrication, Microelectronic International, 19(3), 14-18, 2002
[50]Nowak, K. M., Baker, H. J. & Hall, D. R., Cold processing of green state LTCC with a CO2 laser, Applied Physics A, 84, 267-270, 2006
[51]Nowak, K. M., Baker, H. J. & Hall, D. R., A model for “cold” laser ablation of green state ceramics materials, Applied Physics A, 91, 341-348, 2008
[52]Nowak, K. M., Baker, H. J. & Hall, D. R., “Cold” CO2 laser ablation of green-state LTCC— experimental verification of improved model and comparison of various LTCC materials, Applied Physics A, 103, 1033-1046, 2011
[53]Schneider¸J. M. & Hendricks, C. D., Source of uniform-sized liquid doplets, Review of Scientific Instruments, 35, 1349-1350, 1964