| 研究生: |
廖偉智 Liao, Wei-Zhi |
|---|---|
| 論文名稱: |
移動負載下之三明治壓電複合板振動分析 Vibration Analysis of Sandwich Piezoelectric Plate under Moving Load |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 移動負載 、三明治壓電複合板 、位移與電壓 |
| 外文關鍵詞: | Moving load, Sandwich Piezoelectric Mindlin Plate, Displacement and Voltage |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究目的為探討一塊壓電三明治Mindlin Plate的動態響應,此三明治板結構的上下層為鋁合金板,中間為壓電材料(PZT-5H)。
本文經由Mindlin Plate理論,計算出結構的應力、應變,再藉由應力、應變推算出動能及應變能方程式。通過邊界條件以及形狀函數計算出運動方程式,再以Hamilton’s Principle 理論計算出壓電三明治之統馭方程式,應用解析法於求出壓電複合板之模態頻率。
施加一個集中型移動負載於結構上,獲得其位移與電壓,並探討改變移動負載的速度對於位移與電壓的影響。
The purpose of this paper is to investigate the dynamic response of a piezoelectric sandwich Mindlin Plate. The upper and lower layers of the sandwich plate structure are aluminum alloy plates with piezoelectric material (PZT-5H) in the middle.
The stresses and strains of the structure in this paper are calculated via the Mindlin plate theory. The kinetic energy and strain energy are derived by stress and strain. The governing equations of the piezoelectric sandwich plate are derived by Performing Hamilton's Principle. The modal frequencies of the piezoelectric composite plate are obtained by analytic method.
Applying a concentrated moving load on the structure obtain the displacement of the plate and the voltage on the piezoelectric layer. The velocity effect on the displacement and voltage is investigated in the thesis.
1. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Journal of Applied Mechanics, Vol. 12, pp. 69-77, 1945.
2. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.
3. R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.
4. E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.
5. J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036, 1970.
6. A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
7. N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using a higher‐order shear deformation theory,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 2201-2219, 1985.
8. N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300, 1986.
9. J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.
10. L. X. Luccioni and S. B. Dong, “Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates,” Composites Part B: Engineering, Vol. 29, pp. 459-475, 1998.
11. J. A. Gbadeyan and S. T. Oni, “Dynamic behaviour of beams and rectangular plates under moving loads,” Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.
12. J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.
13. J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads,” Computers & Structures, Vol. 78, pp. 789-799, 2000.
14. C. C. Chao and Y. C. Chern, “Comparison of Natural Frequencies of Laminated by 3-D Theory,” Journal of Sound and Vibration, Vol. 230, No. 5, pp. 985-1007, 2000.
15. M. Aydogdu and T. Timarci, “Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Condition,” Composites Science and Technology, Vol. 63, pp.1061-1070, 2003.
16. G. Bradfiled, “Ultrasonic transducers 1. Introduction transducers. Part A.” Ultrasonic, pp.112-113, 1970.
17. R. D. Mindlin, “Forced thickness –shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, Vol. 22, pp. 83- 88, 1952.
18. H. F. Tiersten, “Thickness vibrations of piezoelectric plates,” The Journal of the Acoustical Society of America, Vol. 35, pp. 53-58, 1963.
19. P. Lloyd and M. Redwood, “Finite‐difference method for the Investigation of the vibrations of solids and the evaluation of the equivalent‐circuit characteristics of piezoelectric resonators,” The Journal of the Acoustical Society of America, Vol. 39, pp. 346-354, 1966.
20. C. K. Lee and F. C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” The Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
21. E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
22. S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
23. Y. K. Kang, H. C. Park, W. Hwang and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminated
beams,” AIAA Journal, Vol. 34, pp. 1921-1926, 1996.
24. M. W. Lin, A. O. Abatan and C. A. Rogers, “Application of commercial finite element codes for the analysis of induced strain-actuated structures,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 869- 875, 1994.
25. J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 46, pp. 70-80, 2000.