| 研究生: |
陳品丞 Chen, Pin-Cheng |
|---|---|
| 論文名稱: |
探討 dasatinib 處理的大腸癌中IRSp53異構體M和S所扮演的角色 Investigating the role of IRSp53 isoforms M and S in dasatinib-treated CRC |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 相關次數: | 點閱:38 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結直腸癌 (CRC) 在台灣為最致命的癌症中排名前三,約佔所有癌症相關死亡人數的 13%。已經發現許多蛋白質可以調節此類癌症的進展,其中一種重要的蛋白質是 EGFR pathway substrate number 8 (Eps8)。目前已發現 Eps8 是會參與在 Src 和 FAK 介導的細胞遷移和增殖的關鍵介質。 Insulin Receptor Substrate protein of 53 kDa (IRSp53) 是 Eps8 的重要結合夥伴,它也調節 Src 和 FAK 所介導的過程。在線上數據庫比對發現IRSp53S 異構物的高表達與更好的整體存活率相關,而 IRSp58M異構物的高表達與較低的無病存活期相關。分析在各種 CRC 細胞株的IRSp53蛋白異構體表現揭示了 SW480 單獨表達IRSp58M,以及發現SW620 細胞中表達IRSp53S,IRSp53T以及IRSp58M三種異構體。在SW480 細胞中誘導表達IRSp53S 和 IRSp58M 的穩定細胞株研究,我們分析這些細胞無論在軟膠細胞群落形成能力試驗、細胞週期分析和老鼠皮下腫瘤生長,都揭示了 IRSp53S 過表達會減少細胞生長,相反的,IRSp58M 過表達則會促進細胞生長。 在SW480 和 Caco-2 細胞中暫時表現 IRSp53S 和 IRSp58M 則揭示了 Src 和 FAK 的活化結果。 當以Src 抑製劑dasatinib的進一步處理,我們發現IRSp53S、IRSp58M 和 Eps8 過表達對細胞不同程度的敏感化性。西方墨點實驗進一步證實,與 SW480 相比,這些過表達細胞中有活化半胱天冬酶-3 (casapase-3)的趨勢。由於 IRSp53 和 Src 都會調節細胞遷徙能力,IRSp53S、IRSp58M 和 Eps8 的過表達增強了細胞遷移,而處理dasatinib可以降低此種遷移。總體而言,這些數據表明 IRSp53S 和 IRSp58M 在調節細胞生長、遷移和dasatinib的細胞凋亡方面發揮著複雜的作用。
Colorectal cancer (CRC) is ranked top 3 of the most lethal cancer in Taiwan, making up around 13% of all cancer related deaths. Many proteins have been found to regulate the progression of this cancer and one important protein involved is EGFR pathway substrate number 8 (Eps8). Eps8 has been found to be a crucial mediator in Src and FAK mediated cell migration and proliferation. Insulin Receptor Substrate protein of 53 kDa (IRSp53) is an important binding partner of Eps8 that might also regulates Src- and FAK-mediated processes. Online databases suggest the high expression of IRSp53S isoform correlates with better overall survival, whereas the high expression of IRSp58M isoform correlates with lower disease free survival. Characterization of various CRC cell lines reveal the expression of IRSp58M in SW480 and both isoforms being expressed in SW620 cells. Inducible expression of IRSp53S and IRSp58M in SW480 cells were generated and soft agar assay, cell cycle analysis and in vivo tumor growth of these cells reveals the decrease in colony formation in IRSp53S overexpressing cells and the promotion of growth in IRSp58M overexpressing cells. Transient overexpression of IRSp53S and IRSp58M in SW480 and Caco-2 cells reveal the activation of Src and FAK. Further treatment of Src inhibitor Dasatinib indicates various degree of sensitivity in IRSp53S, IRSp58M and Eps8 overexpressing cells. Western blot further confirms the increased caspase 3 activity in these overexpressing cells when compared to SW480. Since IRSp53 and Src both regulate cell motility, overexpression of IRSp53S, IRSp58M and Eps8 enhance cell migration, which is ablated by the treatment of Dasatinib. Overall, these data suggest that IRSp53S and IRSp58M play a complicated role in regulating cell proliferation, migration and Dasatinib-induced apoptosis.
1 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2021.
2 2019 Cause of Death Statistics. In: Welfare MoHa (ed): ROC, Taiwan, 2020.
3 Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM et al. Early-onset colorectal cancer: initial clues and current views. Nature Reviews Gastroenterology & Hepatology 2020; 17: 352-364.
4 Hamilton SR. Carcinoma of the colon and rectum. World Health Organization Classification of Tumors Pathology and Genetics of Tumors of the Digestive System 2000: 105-119.
5 Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2000; 18: 1967-1979.
6 Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361: 2449-2460.
7 Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res 2012; 5: 19-27.
8 Colon Cancer. National Comprehensive Cancer Network USA, 2018.
9 Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C et al. The consensus molecular subtypes of colorectal cancer. Nature medicine 2015; 21: 1350-1356.
10 Fontana E, Eason K, Cervantes A, Salazar R, Sadanandam A. Context matters-consensus molecular subtypes of colorectal cancer as biomarkers for clinical trials. Annals of oncology : official journal of the European Society for Medical Oncology 2019; 30: 520-527.
11 Maa M-C, Leu T-H. EPS8, an Adaptor Protein Acts as an Oncoprotein in Human Cancer, 2013.
12 Tocchetti A, Confalonieri S, Scita G, Di Fiore PP, Betsholtz C. In silico analysis of the EPS8 gene family: genomic organization, expression profile, and protein structure. Genomics 2003; 81: 234-244.
13 McGrath J, Tung CY, Liao X, Belyantseva IA, Roy P, Chakraborty O et al. Actin at stereocilia tips is regulated by mechanotransduction and ADF/cofilin. Current biology : CB 2021; 31: 1141-1153.e1147.
14 Carlton AJ, Halford J, Underhill A, Jeng JY, Avenarius MR, Gilbert ML et al. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. The Journal of physiology 2021; 599: 1173-1198.
15 Lin L, Shi Y, Wang M, Wang C, Lu Q, Zhu J et al. Phase separation-mediated condensation of Whirlin-Myo15-Eps8 stereocilia tip complex. Cell reports 2021; 34: 108770.
16 Larson GP, Tran V, Yú S, Caì Y, Higgins CA, Smith DM et al. EPS8 Facilitates Uncoating of Influenza A Virus. Cell reports 2019; 29: 2175-2183.e2174.
17 Chuang JP, Kao CY, Lee JC, Ling P, Maa MC, Leu TH. EPS8 regulates an NLRP3 inflammasome-independent caspase-1 activation pathway in monosodium urate crystal-treated RAW264.7 macrophages. Biochemical and biophysical research communications 2020; 530: 487-493.
18 Castagnino P, Biesova Z, Wong WT, Fazioli F, Gill GN, Di Fiore PP. Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene 1995; 10: 723-729.
19 Maa M-C, Lai J-R, Lin R-W, Leu T-H. Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1999; 1450: 341-351.
20 Schoenherr C, Serrels B, Proby C, Cunningham DL, Findlay JE, Baillie GS et al. Eps8 controls Src- and FAK-dependent phenotypes in squamous carcinoma cells. Journal of Cell Science 2014; 127: 5303-5316.
21 Matòsková B, Wong WT, Nomura N, Robbins KC, Di Fiore PP. RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 1996; 12: 2679-2688.
22 Biesova Z, Piccoli C, Wong WT. Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 1997; 14: 233-241.
23 Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 1999; 401: 290-293.
24 Liu PS, Jong TH, Maa MC, Leu TH. The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 2010; 29: 3977-3989.
25 Li M, Yang J, Zhang L, Tu S, Zhou X, Tan Z et al. A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation. Journal of Experimental & Clinical Cancer Research 2019; 38: 211.
26 Shahoumi LA, Khodadadi H, Bensreti H, Baban B, Yeudall WA. EPS8 phosphorylation by Src modulates its oncogenic functions. British journal of cancer 2020; 123: 1078-1088.
27 Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST et al. Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. The Journal of biological chemistry 2007; 282: 19399-19409.
28 Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H. IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer research 2004; 64: 5237-5244.
29 Yang G, Lu YB, Guan QL. EPS8 is a Potential Oncogene in Glioblastoma. OncoTargets and therapy 2019; 12: 10523-10534.
30 Welsch T, Endlich K, Giese T, Büchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer letters 2007; 255: 205-218.
31 Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer research 2006; 66: 4065-4078.
32 Scita G, Confalonieri S, Lappalainen P, Suetsugu S. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends in Cell Biology 2008; 18: 52-60.
33 Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 2005; 24: 240-250.
34 Chen KW, Chang YJ, Chen L. SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Communicative & integrative biology 2015; 8: e1044189.
35 Lim KB, Bu W, Goh WI, Koh E, Ong SH, Pawson T et al. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. The Journal of biological chemistry 2008; 283: 20454-20472.
36 Oikawa T, Okamura H, Dietrich F, Senju Y, Takenawa T, Suetsugu S. IRSp53 mediates podosome formation via VASP in NIH-Src cells. PLoS One 2013; 8: e60528-e60528.
37 Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland Jr et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. Journal of Cell Science 2003; 116: 2577-2583.
38 Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Current biology : CB 2001; 11: 1645-1655.
39 Kang J, Park H, Kim E. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 2016; 100: 27-39.
40 Dosemeci A, Burch A, Loo H, Toy D, Tao-Cheng JH. IRSp53 accumulates at the postsynaptic density under excitatory conditions. PLoS One 2017; 12: e0190250.
41 Celestino-Soper PBS, Shaw CA, Sanders SJ, Li J, Murtha MT, Ercan-Sencicek AG et al. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Human Molecular Genetics 2011; 20: 4360-4370.
42 Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179-184.
43 Liu L, Sun L, Li Z-H, Li H-M, Wei L-P, Wang Y-F et al. BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects. Behavioral and Brain Functions 2013; 9: 48.
44 Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I et al. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nature communications 2020; 11: 3516-3516.
45 El-Sibai M, Nalbant P, Pang H, Flinn RJ, Sarmiento C, Macaluso F et al. Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells. J Cell Sci 2007; 120: 3465-3474.
46 Kast DJ, Dominguez R. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Molecular biology of the cell 2019; 30: 1285-1297.
47 Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A, Yamada M. Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. Journal of human genetics 2003; 48: 410-414.
48 Okamura-Oho Y, Miyashita T, Ohmi K, Yamada M. Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Hum Mol Genet 1999; 8: 947-957.
49 Govind S, Kozma R, Monfries C, Lim L, Ahmed S. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. The Journal of cell biology 2001; 152: 579-594.
50 Okamura-Oho Y, Miyashita T, Yamada M. Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochemical and biophysical research communications 2001; 289: 957-960.
51 Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annual review of cell and developmental biology 1997; 13: 513-609.
52 Playford MP, Schaller MD. The interplay between Src and integrins in normal and tumor biology. Oncogene 2004; 23: 7928-7946.
53 Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. The oncologist 2009; 14: 667-678.
54 Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 6981-6985.
55 Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J et al. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 1997; 15: 3083-3090.
56 Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. The Journal of biological chemistry 1999; 274: 8335-8343.
57 Sato K, Sato A, Aoto M, Fukami Y. c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochemical and biophysical research communications 1995; 215: 1078-1087.
58 Kmiecik TE, Shalloway D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 1987; 49: 65-73.
59 Hunter T. A tail of two src's: mutatis mutandis. Cell 1987; 49: 1-4.
60 Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636-5642.
61 Sprycel (Dasatinib) [package insert]. Bristol-Myers Squibb Co.; 2006.
62 Bosulif (Bosutinib) [pakage insert]. Pfizer Inc.; 2017.
63 Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers 2020; 12.
64 Puls LN, Eadens M, Messersmith W. Current status of SRC inhibitors in solid tumor malignancies. The oncologist 2011; 16: 566-578.
65 Creelan BC, Gray JE, Tanvetyanon T, Chiappori AA, Yoshida T, Schell MJ et al. Phase 1 trial of dasatinib combined with afatinib for epidermal growth factor receptor- (EGFR-) mutated lung cancer with acquired tyrosine kinase inhibitor (TKI) resistance. British journal of cancer 2019; 120: 791-796.
66 Cardin DB, Goff LW, Chan E, Whisenant JG, Dan Ayers G, Takebe N et al. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. Investigational new drugs 2018; 36: 442-450.
67 Stabile LP, Egloff AM, Gibson MK, Gooding WE, Ohr J, Zhou P et al. IL6 is associated with response to dasatinib and cetuximab: Phase II clinical trial with mechanistic correlatives in cetuximab-resistant head and neck cancer. Oral oncology 2017; 69: 38-45.
68 Kao CY. Study the role of IRSp58M in colorectal cancer, National Cheng Kung University, Tainan, Taiwan, 2020.
69 Watson JV, Chambers SH, Smith PJ. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry 1987; 8: 1-8.
70 Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemotherapy and Pharmacology 1989; 24: 148-154.
71 Bartha Á, Győrffy B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. International Journal of Molecular Sciences 2021; 22: 2622.
72 Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research 2019; 47: W556-W560.
73 Peng Y-R. Study the role of IRSp53 isoforms in colorectal cancer. Masters thesis, National Cheng Kung University, Tainan, Taiwan, 2015.
74 Hori K, Konno D, Maruoka H, Sobue K. MALS is a binding partner of IRSp53 at cell–cell contacts. FEBS Letters 2003; 554: 30-34.
75 Harris BZ, Lim WA. Mechanism and role of PDZ domains in signaling complex assembly. Journal of Cell Science 2001; 114: 3219-3231.
76 Paunola E, Mattila PK, Lappalainen P. WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett 2002; 513: 92-97.
77 Dominguez R. The WH2 Domain and Actin Nucleation: Necessary but Insufficient. Trends in biochemical sciences 2016; 41: 478-490.
78 Wu C, Cui X, Huang L, Shang X, Wu B, Wang N et al. IRTKS Promotes Insulin Signaling Transduction through Inhibiting SHIP2 Phosphatase Activity. Int J Mol Sci 2019; 20.
79 Vaggi F, Disanza A, Milanesi F, Di Fiore PP, Menna E, Matteoli M et al. The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation. PLOS Computational Biology 2011; 7: e1002088.
80 Rodríguez-Pérez F, Manford AG, Pogson A, Ingersoll AJ, Martínez-González B, Rape M. Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion. Developmental Cell 2021; 56: 588-601.e589.
81 Yu-Hua W. Establishing IRSp53S-inducible SW480 colorectal cancer cell lines and studying how IRSp53S affects cell proliferation in colon cancer cells. Master thesis, National Cheng Kung University, Tainan, Taiwan (ROC), 2019.
82 Kang Z-J, Liu Y-F, Xu L-Z, Long Z-J, Huang D, Yang Y et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer 2016; 35: 48-48.
83 Martellucci S, Clementi L, Sabetta S, Mattei V, Botta L, Angelucci A. Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers 2020; 12: 1448.
84 Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 2009; 25: 1189-1191.
85 Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research 2019; 47: W636-W641.
86 Kang J, Park H, Kim E. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 2015; 100.
87 Kast DJ, Dominguez R. Mechanism of IRSp53 inhibition by 14-3-3. Nature communications 2019; 10: 483.