簡易檢索 / 詳目顯示

研究生: 蕭亞雯
Hsiao, Ya-Wen
論文名稱: Ba1-ySryLa4(WO4)7:RE3+及BaLa4(W1-yMoyO4)7:RE3+ 螢光粉體之製備及光致發光特性研究
Synthesis and photo-luminescent properties of Ba1-ySryLa4(WO4)7:RE3+and BaLa4(W1-yMoyO4)7:RE3+ phosphors
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 141
中文關鍵詞: BaLa4(wo4)7螢光粉
外文關鍵詞: BaLa4(wo4)7, phosphor
相關次數: 點閱:97下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以BaLa4(WO4)7為主體晶格材料,摻雜一系列稀土元素Eu3+、Sm3+、Dy3+、Tb3+、Er3+為活化劑,且藉由Sr2+置換Ba2+或Mo6+置換W6+位置調變BaLa4-xEux(WO4)7晶格,探討其粉體結構及光致發光性質等特性。紅光螢光粉中,BaLa4-xEux(WO4)7螢光粉的5D07F2(614 nm)放射強度高於5D07F1(595 nm)之放射強度,且放光強度隨Eu3+離子濃度之增加而提高,直到x = 0.24擁有最大放光強度,Eu3+摻雜量超過x = 0.24,將會產生第二相,導致放光強度降低。為了增進其螢光性質,以Sr2+離子取代晶格中Ba2+離子位置,或是Mo6+離子取代晶格中W6+離子位置以調整晶格變形,使Eu3+摻雜量能因結構的調節而增加,並改善光致發光性質。Ba0.7Sr0.3La3.2Eu0.8(WO4)7及BaLa3.4Eu0.6(W0.8Mo0.2O4)7具有最佳發光強度,其 5D07F2紅光放光其強度可達商業螢光粉ZnS: Mn2+, Te2+的2倍及1.5倍,色度座標分別位於(0.657,0.342)、(0.655,0.341),相當接近國際標準紅光的座標(0.67,0.33)。
    BaLa4-xTbx(WO4)7螢光粉的放光性質可隨Tb3+離子摻雜濃度調整,摻雜較低Tb3+濃度者為藍光放光,摻雜濃度較高者為綠光放光,放光強度隨Tb3+離子摻雜濃度增加而增強。
    BaLa4-xREx(WO4)7摻雜Dy3+、Sm3+、Er3+等稀土離子所形成之螢光粉,能產生各種不同顏色之放光。如Dy3+為近白光的放光、Sm3+為橘紅光的放光及Er3+為綠光的放光,其色度座標分別為(0.224, 0.369)、(0.56, 0.438)、(0.223, 0.725),且其激發波長皆位於350~480 nm 間,具有發展為白光LED系統之螢光粉應用的潛力。

    The synthesis and photoluminescent properties of BaLa4(WO4)7 doped with various rare earth ions such as Eu3+、Sm3+、Dy3+、Tb3+、Er3+ ions and introduced Sr2+ ions to substitute the Ba2+ ions or Mo6+ ions to substitute the W6+ ion had been investigated.
    For BaLa4-xEux(WO4)7 phosphors, the emission intensity of 5D0 →7F2 transition was stronger than 5D0→7F1 transition. The emission intensity increased with Eu3+ concentration until x = 0.24, and then decreased. As the Eu3+ concentration was further raised to x = 0.28, the second phase BaWO4 and La2(WO4)3 appeared. In order to further enhance the optical properties, we introduced Sr2+ to substitute Ba2+ or Mo6+ to substitute W6+ in the BaLa4-xEux(WO4)7 compound. The results showed that increasing the Sr2+ or Mo6+ content could increase the solubility of Eu3+ in BaLa4-xEux(WO4)7, and therefore enhanced the emission intensity. Ba0.7Sr0.3La3.2Eu0.8(WO4)7 and BaLa3.4Eu0.6(W0.8Mo0.2O4)7 had optimal doping concentration and maximum intensity, and the CIE chromaticity coordinate located at(0.657,0.342)、(0.655, 0.341) very close to the NTSC system standard red chromaticity(0.67, 0.33).
    The chromaticity coordinate of BaLa4(WO4)7 : Tb3+ phosphors varied with the Tb3+-doped concentrations from blue to green, showed that BaLa4(WO4)7 : Tb3+ phosphors were color-tunable.
    BaLa4(WO4)7 doped with various activators(Sm3+、Dy3+、Er3+ ions)could emit different colors. such as orange (Sm3+)、yellowish white (Dy3+)、green(Er3+). One of the interesting results of this that the excitation wavelength of the phosphors and the emission wavelengths of the
    LED (350~480 nm) have closely overlapped, which provides the potential as the LED converted phosphors in solid state lighting technology.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 4 2.1 發光原理與機制 4 2.1.1發光定義 4 2.1.2 螢光體發光原理 5 2.1.3 組態座標圖(configuration coordination diagrams) 6 2.1.4電子-聲子交互作用(Electron-phonon interaction) 7 2.1.5史托克位移(Stoke shift) 8 2-1-6 補償效應(Offset effect) 8 2-1-7 光游離效應(Photoionization effect) 9 2.2固態材料之光致發光 9 2.2.1 本質發光(Intrinsic luminescence) 9 2.2.2 異質發光(Extrinsic Luminescence) 10 2.3螢光材料 11 2.3.1 主體晶格之選擇 11 2.3.2 活化劑之選擇 12 2.3.3 抑制劑 12 2.4影響發光效率之因素 12 2-4-1 主體晶格(Host) 12 2-4-2 濃度淬滅(Concentration quenching) 13 2-4-3 熱淬滅(Thermal quenching) 13 2.5鑭系元素之性質 14 2.5.1稀土離子之價數 14 2.5.2稀土離子之f-f電子躍遷 15 2.5.3稀土離子之f-d電子躍遷 15 2.6色彩簡介 16 2.6.1 色溫(Color temperature) 16 2.6.2 演色性指標(Color rendering index, CRI) 16 2.6.3 CIE 色度座標圖(CIE chromaticity diagram ) 17 2-7 BaLa4 (WO4) 7晶體簡介 18 第三章 實驗方法與步驟 30 3.1實驗原料 30 3.2實驗流程 31 3.3量測與分析方法 31 3.3.1 X光繞射分析(X-Ray Diffraction Analysis) 31 3.3.2熱重/熱差分析(TG/DTA)分析 31 3.3.3掃描式電子顯微鏡(SEM)分析 31 3.3.4光致發光光譜(Photoluminescence spectrum)分析 32 3.3.5衰減時間(Decay time)與衰減曲線(Decay curve) 32 3.3.6吸收光譜(Absorption Spectrometer) 32 3.3.7色度座標分析(Analysis of C.I.E Chromaticity Diagram)32 第四章 結果與討論 35 4-1主體晶格分析 35 4-1-1熱差熱重(TG/DTA)及結晶相分析 35 4-1-2表面形態分析 36 4-1-3吸收光譜分析 36 4-1-4 結論 37 4-2 BaLa4(WO4)7:Eu3+螢光粉體 44 4-2-1 結晶相分析 44 4-2-2 表面形態分析 44 4-2-3激發、發射與吸收光譜分析 45 4-2-4煆燒之持溫時間對發光影響 47 4-2-5 Eu3+摻雜濃度對發光影響 47 4-2-6光致發光的衰減現象 47 4-2-7色度座標圖 48 4-2-8結論 48 4-3 Ba1-ySryLa4(WO4)7:Eu3+螢光粉體 62 4-3-1 結晶相分析 62 4-3-1-1 Sr2+摻雜濃度對結構影響 62 4-3-1-2 Eu3+摻雜濃度對結構影響 63 4-3-2 表面形態分析 64 4-3-3激發、發射光譜分析 65 4-3-4 Sr2+摻雜濃度對發光影響 65 4-3-5 Eu3+摻雜濃度對發光影響 66 4-3-6發光效率 66 4-3-7 結論 67 4-4 BaLa4(W1-yMoyO4)7:Eu3+螢光粉體 81 4-4-1結晶相分析 81 4-4-2 Mo6+摻雜濃度對表面形態影響 82 4-4-3激發、發射光譜分析 82 4-4-4 Mo6+摻雜濃度對發光影響 83 4-4-5 Eu3+摻雜濃度對發光影響 83 4-4-6發光效率 84 4-4-7結論 84 4-5 BaLa4(WO4)7:Sm3+螢光粉體 94 4-5-1 Sm3+摻雜濃度對結構影響 94 4-5-2激發、發射光譜分析 94 4-5-3 Sm3+摻雜濃度對發光影響 95 4-5-4光致發光的衰減現象 95 4-5-5色度座標圖 96 4-5-6結論 96 4-6 BaLa4(WO4)7 : Dy3+螢光粉體 104 4-6-1 Dy3+摻雜濃度對結構影響 104 4-6-2激發、發射光譜分析 104 4-6-3 Dy3+摻雜濃度對發光影響 105 4-6-4光致發光的衰減現象 105 4-6-5色度座標圖 106 4-6-6 結論 106 4-7 BaLa4(WO4)7 : Er3+、Tb3+螢光粉體 114 4-7-1 Er3+、Tb3+摻雜濃度對結構影響 114 4-7-2摻雜Tb3+之激發、發射光譜分析 114 4-7-3 Tb3+摻雜濃度對5D47F5的影響 115 4-7-4摻雜Er3+之激發、發射光譜分析 116 4-7-5色度座標圖 116 4-7-6結論 117 第五章 總結論 131 參考文獻 134

    1. 許榮宗,“白光LED製作技術”, 工業材料雜誌, (2005) 220.
    2. Ivan,“淺談白光LED發光顏色與螢光粉的關係”, LEDinside-技術專欄. (2007)
    3. 楊素華,“螢光粉在發光上的應用 ”, 科學發展, (2002) 358.
    4. 王書任、林仁鈞,“讓LED發光的功臣-螢光粉”, 科學發展, (2009) 435.
    5. V Sivakumar and U. V. Varadaraju,“ Intense Red-Emitting Phosphors for White Light Emitting Diodes ”, J. Electrochem. Soc., 152 (2005) H168.
    6. O.A. Lopez, J. Mckittrick and L.E. Shea. , J. Lumin., 71 (1997) 1.
    7. H. Yamamoto, M. Mikami, Y. Shimomura and Y. Oguri, J. Lumin., 1079 (2000) 87.
    8. K. N. Kim, H.K. Jung, H. D. Park and D. Kim,“ High luminance of new green emitting phosphor, Mg2SnO4: Mn ”, J. Lumin., 99 (2002) 169.
    9. L. D. Carlos, V. de Zea Bermudez, and R. A. Sá Ferreira, “ Multi-wavelength europium-based hybrid phosphors ”, J. Non-Cryst. Solids, 247 (1999) 203.
    10. Z. G. Wei, L. D. Sun, C. S. Liao, C. H. Yan, “ Fluorescence intensity and color purity improvement in nanosized YBO3:Eu ”, Appl. Phys. Lett., 80 (2002) 1447.
    11. E. Danielson, J. H. Golden, E.W. McFarland, CM. Reaves, W.H. Weinberg, X.D. Wu, Nature, 389 (1997) 944.
    12. H. Yamamoto, S. Seki and T. Ishiba,“The Eu site symmetry in AEu (MoO4)2 (A = Cs or Rb) generating saturated red luminescence”, J. Solid State Chem., 94 (1991) 396.
    13. J. P. M. Van Vliet, G. Blasse and L.H. Brixner,“Luminescence properties of alkali europium double tungstates and molybdates AEuM2O8”, J. Solid State Chem., 76 (1988) 160.
    14. Md. M. Haque, and D. K.Kim,“Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors”, Materials Letters, 63 (2009) 793.
    15. R.C.A. Keller, G. Blasse, T. Lindholm, and M. Leskelä.,“The luminescence of doped and undoped BaLn2(MoO4)4 (Ln = La, Gd)”, Mater. chem. phys., 20 (1988) 589.
    16. D. Uhlich, T. Jüstel, J. Plewa,“Phase formation and characterization of Sr3Y2Ge3O12, Sr3In2Ge3O12, and Ca3Ga2Ge3O12 doped by trivalent europium”, J. lumin., 128 (2008) 1649.
    17. http://www.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap11.
    18. Vij, D. R., “Luminescence of Solid”, Plenum Press, New York, (1998) 61.
    19. 楊智量, “藉pH值控制混合之固相反應製備的YAG:Ce粉體分析及其螢光性質”, 國立成功大學資源工程學系碩士論文, 2005.
    20. 陳俞仲, “錫酸鹽M2SnO4(M= Sr, Ca, Zn)螢光粉之合成與螢光特性研究”,國立成功大學材料科學及工程學系博士論文, 2005.
    21. 劉如熹、林益山、廖秋峰, “LED照明光源展望(一):從藍光紫外光到白光”, 全華科技, (2005).
    22. H. S. Nalwa, L. S. Rohwer, A. J. Heeger and N. Laureate, “Handbook of Luminescence”, Display Materials, and Devices-Inorganic Display Materials, American Scientific Publishers, (2003).
    23. 李育群,“鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究”,國立成功大學材料科學及工程學系博士論文, 2007.
    24. 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科技, (2003).
    25. A. H. Kitai,“Solid State Luminescence”, Chapman & Hall, Londonp, (1993).
    26. G. Blasse, W. Schipper and J.J. Hamelink,“On the quenching of the luminescence of the trivalent cerium ion”, Inorg. Chim. Acta, 189 (1991) 77
    27. G. Blasse, C. de Mello Donegá, N. Efryushina, V. Dotsenko and I. Berezovskaya, “Luminescence of Pr3+ in indium borate (InBO3)”, Solid State Commun., 92(8) (1994) 687.
    28. DeLuca, John A., “An Introduction to Luminescence in Organic Solids”, J. Chem. Education., 57 (8) (1980).
    29. Ropp, R. C.,“Luminescence and the solid state”Chapter 8 Elsevier Science Publisher (1991).
    30. Yen, Shigeo Shionoya and William M.,“Phosphor Handbook”,CRC press, (1999).
    31. G. Blasse and B. C. Grabmaier,“Luminescent Materials”, Springer-Verlag, (1994).
    32. P. Atkins, L. Jones,“Chemistry molecules, Matter, and Change”3rd edition, (1997) 22.
    33. 蘇鏘, “稀土化學”, 河南科學技術出版社, (1993).
    34. 蘇鏘, “稀土元素”, 北京 , 清華大學出版社, (2000).
    35. Blasse G., Handbook on the Physics and Chemistry of Rare Earths. North Holland , (1979).
    36. T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep., (1983).
    37. V. K. Trunov, A. A. Evdokimov ,“Investigation of Certain Tungstate Systems”, Russ. j. inorg. chem., 18 (1973) 10.
    38. G. Blasse, G. J. Dirksen and L. H. Brixner,“The Luminescence of Eu3+-Activated BaLa4(WO4)7”, Mater. chem. phys., 21 (1989) 293.
    39. http://micro.magnet.fsu.edu/optics/timeline/people/jablonski.html.
    40. S. Sumithra and A. M. Umarji.,“Role of crystal structure on the thermal expansion of Ln2W3O12(Ln=La, Nd, Dy, Y, Er and Yb)”, Solid State Sci., 6 (2004) 1313.
    41. L. S. Cavalcante , J. C. Sczancoski, J.W.M. Espinosa, J.A. Varela, P.S. Pizani and E. Longo,“Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal”, J. Alloy Comp., 474 (2009) 195.
    42. G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+ - activated oxides”, J. Chem. Phys., 45(7) (1966) 2356.
    43. X. Gao, Y. Wang, D. Wang and B. Liu,“Luminescent properties of KGd1-x(WO4)2: Eux3+ and KGd1-x(WO4)2−y(MoO4)y: Eux3+ phosphors in UV–VUV regions”, J. Lumin., 129 (2009) 840.
    44. F. N. Shi, J. Meng, and Y. F. Ren,“Structure and Luminescent Properties of Three New Silver Lanthanide Molybdates”, J. Solid State Chem., 121 (1996) 236.
    45. T. Igarashi, M. Ihara, T. Kusunoki, and K. Ohno, Appl. Phys. Lett., “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor ”,76 (2000) 1549.
    46. B. S. Tsai, Y. H. Chang, Y. C. Chen,“Preparation and luminescent characteristics of Eu3+-activated MgxZn1−xGa2O4 nanocrystals”, J. Alloy Comp., 407 (2006) 289.
    47. S. Freed,“Spectra of ions in fields of various symmetry in crystals and solutions”, Rev. Mod. Phys., 14 (1942) 105.
    48. B. S. Tsai, Y. H. Chang and Y. C. Chen,“Synthesis amd luminescent properties of MgIn2-xGaxO4:Eux3+ phosphors”, Electrochem.Solid-State Lett., 8(7) (2005) H55.
    49. S. Polizzi, M. Battagliarin,, M. Bettinelli, A. Speghini, and G. Gagherazzi,“Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”, J. Mater. Chem., 12 (2002) 742.
    50. W. J. L. Oomen, and A. M. A. van Dongen,“Europium(III) in oxide glasses:Dependence of the emission spectrum upon glass composition”, J. Non-Cryst. Solids, 111 (1989) 205.
    51. S. Shionoya and W. M. Yen,“Phosphor Handbook”, CRC press (1999).
    52. M. Inokuti, and F. Hirayama,“Influence of energy transfer by the exchange mechanism on donor luminescence”, J. Chem. Phys., 43 (1965) 1978.
    53. J. P. Rainho, D. Ananias, Z. Lin, A. Ferreira, L.D. Carlos and J. Rocha, “Photoluminescence and local structure of Eu(III)-doped zirconium silicates”, J. Alloy Comp., 374 (2004) 185 .
    54. A. Xie, X. Yuan, F. Wang, Y.Shi, J. Li,“Synthesis and luminescent properties of Eu3+-activated molybdate-based novel red-emitting phosphors for white LEDs”, J. Alloy Compd., 501 (2010) 124.
    55. Y. Yang, Z. Ren, Y. Tao, Y.Cui and H. Yang,“Eu3+ emission in SrAl2B2O7 based phosphors”, Current Applied Physics, 9 (2009) 618.
    56. X. M. Liu, C. K. Lin, and J. Lin,“White light emission from Eu3+ in CaIn2O4 host lattices”, Appl. Phys. Lett. , 90 (2007) 081904.
    57. F. Lei, B. Yan ,and H. H. Chen,“Solid-state synthesis, characterization and luminescent properties of Eu3+-doped gadolinium tungstate and molybdate phosphors: Gd(2-x)MO6: Eu x3+ (M=W, Mo) ”, J. Solid State Chem. , 181(2008) 2845.
    58. S. Ye, C. H. Wang, X. P. Jing,“Photoluminescence and Raman Spectra of Double-Perovskite Sr2Ca(Mo/W)O6 with A-and B-Site Substitutions of Eu3+ ”, J. Electro Soc., 155(2008) 148.
    59. J. Wang, X. Jing, C. Yan, J. Lin, F. Liao, “Influence of fluoride on f–f transitions of Eu3+ ”, J. Lumin., 121 (2006) 57.
    60. F. Lei, B. Yan,“Hydrothermal synthesis and luminescence of CaMO4:RE3+(M :W, Mo; RE : Eu, Tb) submicro-phosphors ”, J. Solid State Chem., 181 (2008) 855.
    61. Y. C. Li , Y. H. Changa, Y. F. Lin ,“Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped ”, J. Alloys Comp.,439 (2007) 367 .
    62. G. Blasse and G. J. Dirksen,“ A simple luminescence experiment suggesting rare earh ion pairing in the fuorite structrue”, J. Electrochem. Soc., 127 (4) (1980) 978.
    63. J.C. Krupa, I. Gerard and P. Martin,“Vacuum UV excitation of luminescent materials by synchrotron radiation—electronic structure ”, J. Alloys Compd., 188 (1992) 77 .
    64. H. Choi, C.H. Kim, C.H. Pyun and S.J. Kim,“Luminescence of (Ca, La)S : Dy ”,J. Lumin ., 82 (1999) 25.
    65. J. Kuang, Y. Lie and J. Zhang,“White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3”, J.Solid State Chem., 127(2005) 266.
    66. L. Nagli, D. Bunimovich, A. Katzir, O. Gorodetsky and V. Molev, “The luminescence properties of Dy-doped high silicate glass”, J. Non-cryst. Solids., 217 (1997) 208.
    67. B. Grobelna,“Luminescence based on energy transfer in xerogel doped with Ln2-xTbx(WO4)3”, J. Alloy Comp., 440 (2007) 265.
    68. A. Mayolet, W. Zhang, E. Simoni, J. C. Krupa and P. Martin, “Investigation in the VUV range of the excitation efficiency of the Tb3+ ion luminescence in Y3(Alx,Gay)5O12 host lattices”, Opt. Mater., 4 (1995) 757.
    69. K. S. Sohn, J. M. Lee, I. W. Jeon and H. D. Park,“Combinatorial searching for Tb3+-activated phosphors of high efficiency at vacuum UV excitation”, J. Electrochem. Soc., 150 (8) (2003) H182.
    70. Q.L. Liu, F.X. Zhang, T. Tanaka and T. Aizawa.,“Green emission from B2N2CO thin films doped with Tb”, Appl. Phys. Lett., 81 (2002) 34.
    71. C. H. Kam and S. Buddhudu,“Luminescence and decay behaviour of Tb3+:ZrF4-BaF2-LaF3-YF3-AlF3-NaF optical glasses”, Physica B, 337 (2003) 237.
    72. C.M. Nascimento and M.J.V. Bell,“Reverse saturable absorption in Er3+ doped systems”, J. Non-Cryst. Solid, 348 (2004) 90.
    73. J. Hao, S. A. Studenikin and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis”, J. Lumin., 93 (2001) 313.
    74. H. X. Zhang, S. Buddhudu, C. H. Kam, Y. Zhou, Y. L. Lam, K. S. Wong, B. S. Ooi, S. L. Ng and W. X. Que,“Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors”, Mater. Chem. Phys., 68 (2001) 31.
    75. C. H. Chang, B. S. Chiou, K. S. Chen, C. C. Ho and J. C. Ha,“The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS:Cu, Al phosphors”, Ceram. Int., 31 (2005) 635.
    76. Y. Nakanishi, K. Kimura, H. Kominami, H. Nakajima, Y. Hatanaka and G. Shimaoka,“Dependence of structural and luminescent characteristics of Y2O3:Er3+ thin film phosphors on substrate”, Appl. Surf. Sci., 212 (2003) 815.

    下載圖示 校內:2015-07-30公開
    校外:2015-07-30公開
    QR CODE