簡易檢索 / 詳目顯示

研究生: 雷格斯
Regis, Humphrey Christian
論文名稱: 探討加勁無舖面道路功能之反覆加載試驗
Cyclic Tests on the Performance of Reinforced Unpaved Roads
指導教授: 黃景川
Huang, Ching-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 130
中文關鍵詞: 地工合成物加勁材反覆加載試驗車轍沉陷隔離材無鋪面道路模型試驗
外文關鍵詞: Geosynthetics, Reinforcement, Cyclic Loading Test, Settlement, Separation, Unpaved Road, Model Test
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋪設地工合成物在公路底層下方可做為隔離材,以防止底層碎石粒料與基層土壤之混合,而降低底層之力學效用。另一方面,可牽制土壤及碎石粒料之側向變形,提高路面之承載能力。
    本研究對於加勁與不加勁之無鋪面道路模型進行反覆加載試驗,探討使用織布或地工格網做為隔離材與加勁材時,對於延緩道路車轍發生、延長道路壽命之效果。本研究之結果可提供一有效措施,以改善道路系統之服務年限與經濟效益。並可提供未來公路設計法改良之參考。
    試驗結果顯示,採用地工格網為加勁材與隔離材時路面之表現,較使用織布時為佳。一般而言,若同時使用二層地工合成物一層為加勁材,另一層為隔離層,則可減少車轍深度,並減少基層土壤入侵底層級配之現象,大大提升無鋪面道路之壽命。

    The purpose of a geosynthetic layer or separator beneath the base course of a road
    pavement is to provide extra resistance and support capacity, as well as prevent the
    aggregate and the subgrade from intermixing or contamination, which in turn causes the
    weakening of the pavement structure. However, it is hypothesized that the absence of a
    geosynthetic layer, in this case a geotextile or a geogrid, will allow the generally tough
    aggregate of the base course and the generally soft subgrade to intermix.
    Some cyclic loading tests on unpaved road structures were performed to
    investigate and understand the performance of the design parameters currently in use.
    With these tests, a better and more comprehensive approach could be sought to improve
    the life span and economic impact of the road network, so as to aid in the overall
    highway design criteria.
    The test results demonstrated that a geogrid-reinforced ground outperformed the
    woven-geotextile-reinforced one. In general, the use of two layers of geosynthetics, one
    layer as a reinforcement and the other as a separator greatly enhances the roadway’s life
    span; in the sense that a smaller rutting, a smaller degree of intermixing can be achieved
    through correct placement of reinforcement and separation layers

    CHAPTER FIVE CONCLUSION AND SUGGESTIONS .....................................107 5.1 Conclusions. .............................................................................................107 5.2 Recommendations.....................................................................................109 REFERENCES ......................................................................................................111 Appendix A: Tables of Deformation Values .................................................... 116 Appendix B: Tables of Strain Rate Values....................................................... 119 Appendix C: St. Lucia Country Info ...............................................................125 Appendix D: Vitae..........................................................................................130 VI

    1. Al-Qadi, I.L., T.L. Brandon, R.J. Valentine, and T.E. Smith. (1994). “Laboratory
    Evaluation of Geosynthetic Reinforced Pavement Sections.” Transportation
    Research Board, No. 1439. 73rd Annual Meeting, Washington, D.C., pp.25-32.
    2. Al-Qadi, I.L., Brandon, T.L., Lacina, B.A., and Bhutta, S.A. (1996).
    “Construction and Instrumentation of Geosynthetically Stabilized Secondary
    Road Tests Sections.” Transportation Research Board, No. 1534, Washington,
    D.C., pp.55-57.
    3. American Association of State Highway and Transportation Officials, “Interim
    Guide for the Design of Pavement Structures,” 1972 or later.
    4. Appea, Alexander Kwesi (1997). “In Situ Behavior of Geosynthetically
    Stabilized Flexible Pavement,” Blacksburg, Virginia, USA.
    5. Archer, S., P.E., Subgrade Improvement for Paved and Unpaved Surfaces Using
    Geogrids, October 2008.
    6. Austin, D.N. and Coleman, D.M. (1993). “A Field Evaluation of
    Geosynthetic-Reinforced Haul Roads over Soft Foundation Soils.” Geosynthetics
    93, Canada, pp.65-80.
    7. Barksdale, R.D., Brown, S.F., Chan, F. (1989). “Potential Benefits of
    Geosynthetics in Flexible Pavement Systems,” National Co-Operative Highway
    Research Program Report 315, Transportation Research Board, Washington, D.C.
    8. Barsvary, A.K. and P. Korgemagi. (1979). The Geotextile Use of Filter Fabrics in
    Highway Construction. Rep. EM-13, Ministry of Transport and Communications,
    Engineering. Materials Office, Ontario, Canada.
    112
    9. Bell, J.R. (1980). “Geotextile for Soil Improvement.” Proceedings of the
    American Society of Civil Engineers National Convention, Portland, OR, pp.1-30.
    10. Berg, R.R., Christopher, B.R. and Perkins, S.W., 2000. “Geosynthetic
    Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures”
    – GMA White Paper II, Geosynthetic Materials Association, Roseville, MN, June
    2000.
    11. California Department of Transportation, Basheer, I., “Guide for Designing
    Subgrade Enhancement Geotextiles,” December 10, 2008.
    12. Carrol, R.G. Jr., Wall, J.C., and Haas, R. (1987). Granular Base Reinforcement of
    Flexible Pavement Using Geogrids.” Geosynthetic Conference, Vol.8, No. 3,
    pp.165-189.
    13. Christopher, B.R. and Holtz, R.D. (1985). Geotextile Engineering Manual.
    Report FHWA-TS-86/203 STS Consultants, Ltd., Northbrook, IL, for Federal
    Highway Administration, Washington, D.C.
    14. Christopher, B.R. and Lacina, B.A., “Roadway Subgrade Stabilization Study,”
    Proceedings of GeoAmericas 2008, Cancun, Mexico, 2008, International
    Geosynthetic Society, pp.1013-1021.
    15. Christopher, B.R., Perkins, S.W., Lacina, B.A., Marr, W.A., “Pore Water
    Pressure Influence on Geosynthetic Stabilized Subgrade Performance,”
    Proceedings, 2009 Geosynthetics Conference, Salt Lake City, Utah, February
    2009.
    16. Dewar, S., (1962). “The Oldest Roads in Britain.” The Countryman, Vol. 59, No.
    3, pp.547-555.
    17. De Goat, M., Janse, E., Maagdenberg, T.A.C., and Van Den Berg, C. (1986).
    “Design Methods and Guidelines for Geotextile Applications in Road
    113
    Construction.” Proceedings of the Third International Conference on
    Geotextiles. Vienna, Austria.
    18. Giroud, J.P., and L. Noiray. (1981). “Geotextiles Reinforced Unpaved Road
    Design,” Journal of Geotechnical Engineering, Vol. 107, No. 9. pp.1233-1253,
    ASCE.
    19. Giroud, J.P. and Han, J. (2004a). “Design Methods for Geosynthetic Reinforced
    Unpaved Roads: Part I - Development of Design Method,” Journal of
    Geotechnical and Geoenvironmental Engineering, in press, ASCE.
    20. Haliburton, T.A., and Baron, J.V. (1983). “Optimum Method for Design of
    Fabric-Reinforced Unsurfaced Roads.” Transportation Research Record No. 916,
    No. 26-3, Washington, D.C., pp.26-32.
    21. Hamilton, J.M., Pearce, R.A., “Guidelines for Design of Flexible Pavements
    Using Mirafi® Woven Stabilization Fabrics,” Law Engineering, Houston, TX,
    1981.
    22. Hausmann, M.R. (1987). “Geotextile for Unpaved Roads – Review of Design
    Procedures.” Geotextiles and Geomembranes, 1987, Vol. 5, No. 3, pp.201-233.
    23. Hoare, D.J. (1982). “A Laboratory Study into Pumping Clay through Geotextiles
    under Dynamic Loading,” Proceedings of the Second International Conference
    on Geotextiles, Vol. 2, Las Vegas, NV. pp.423-428.
    24. Holtz, R.D. and Harr, M.E. (1983). “Analytical and Experimental Investigation of
    Soil Reinforcing,” Report No. ESL- TR-82-31, Perdue University, West
    Lafayette, IN, for Tyndall AFB, FL.
    25. Huang, C.C., Tatsuoka, F. (1990). “Bearing Capacity of Reinforced Horizontal
    Sandy Ground,” Geotextiles and Geomembranes 9, pp.51-82.
    114
    26. Huang, Y.H. (1993). “Pavement Analysis and Design,” Prentice Hall, Englewood
    Cliffs, New Jersey.
    27. Jorenby, B.N., and Hicks, R.G. (1986). “Base Contamination Limits.”
    Transportation Research Record, No. 1095, Washington, D.C.
    28. Kao, Rong-Hung (2011). “Research on Using Local Rock Fragments for
    Highway Base Course,” Tainan, Taiwan, R.O.C.
    29. Koerner, R.M. (2005). “Designing With Geosynthetics,” Fifth Edition, Prentice
    Hall, Upper Saddle River, NJ.
    30. Milligan, G.W.E., Jewell, R.A., Houlsby, G.T. and Burh, H.J. (1989). “A New
    Approach to the Design of Unpaved Roads.” Ground Engineering, Vol. 22, No.
    3, pp.25-29.
    31. Perkins, S.W., Christopher, B.R., Lacina, B.A., “Mechanistic-Empirical Method
    for Unpaved Roads Using Geosynthetics,” Proceedings of the 4th European
    Geosynthetics Conference, Edinburgh, Scotland, Paper No. 228.
    32. Perkins, S.W., and Ismeik, M. (1997a). “A Synthesis and Evaluation of
    Geosynthetic Reinforced Base Layers in Flexible Pavements: Part 1,”
    Geosynthetics International, Vol. 4, No. 6, pp.605-621.
    33. Potter, J.F. and Currer, E.W.H. (1981). “The Effects of a Fabric Membrane on the
    Structural Behavior of a Granular Road Pavement.” Report No. LR996, TRRL,
    Crowthorne, UK.
    34. Snaith, M.S. and Bell, A.L. (1978). “The Filtration Behavior of Constructed
    Fabrics under Conditions of Dynamic Loading.” Geotechnique, Vol. 28, No. 4,
    pp.466-469.
    35. Tingle, J.S. and Jersey, S.R. (2007). “Empirical Design Methods for
    Geosynthetic-Reinforced Low-Volume Roads,” Transportation Research Record:
    115
    Journal of the Transportation Research Board, No. 1989, Vol. 2, Washington,
    D.C., pp.91-101.
    36. U.S. Army Corps of Engineers. (2003). “Use of Geogrids in Pavement
    Construction,” ETL 1110-1-189.Highway Institute, Course No. 132013,
    “Geosynthetic Design and Construction Guidelines Reference Manual, Chapter
    5,” Publication No. NHI-06-116, February 2007.
    37. Vashi, Jigisha M., Desai, M.D., Desai, A.K. and Solanski, C. H. (2008).
    “Geosynthetic Materials and its Properties for Reinforced Earth Structures,” New
    Delhi, India.
    38. Yang, S.H. and Al-Qadi, I.L. (2007). “Cost-Effectiveness of Using Geotextiles in
    Flexible Pavements.” Geosynthetics International, 14, No. 1, 2-12.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE