簡易檢索 / 詳目顯示

研究生: 張銀谷
Dion, Ingram
論文名稱: 自激式聲波感測器應用於液體黏滯度量測
A Stand-alone Acoustic Wave Sensor for Liquid Viscosity Measurement
指導教授: 李永春
Lee, Y. C.
蕭飛賓
Hsiao, F. B.
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 91
中文關鍵詞: 液體黏滯度感測器甲基丙烯脂二氧化矽氧化鋅相位檢知電路拉幅波黏滯度表面聲波元件
外文關鍵詞: Love wave mode liquid viscosity sensors, viscosity, Love wave sensors, velocity change, wave attenuation, PMMA, SiO2, ZnO
相關次數: 點閱:84下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   表面聲波元件可以應用於多種的感測與檢測技術,諸如利用化學吸附層反應的瑞利波(Rayleigh wave)氣體感測器、可檢知加速度的藍姆波(Lamb wave)加速規、以及利用質量負載效應檢測液體黏滯度的拉幅波(Love wave)感測器…等。其中,由於拉幅波屬於剪力波形式的波傳,因此特別適合液體的檢測(如血液黏滯度、關節液黏滯度、眼液黏滯度…等);拉幅波液體黏滯度感測器,其原理是利用交指叉狀電極做為壓電基材的電極,並在表面濺鍍一層彈性材料層作為傳導層(Guiding layer),形成拉幅波,再藉由液體黏滯產生之質量負載效應改變拉福波之頻率與插入損失(Insertion Loss),並搭配實驗電子儀器設備達到檢測之目的。然而,由於共振頻率檢知技術較不精確且頻率飄移也不容易測得、實驗電子儀器設備體積笨重龐大、昂貴、攜帶不易…等因素,因此限制其應用。
      本文將發展一可靠而且輕便的拉幅波液體黏滯度感測器。首先以甲基丙烯脂(PMMA)、二氧化矽(SiO2)、氧化鋅(ZnO)三種材料為作為拉幅波的波導層,完成感測區域為4.89mm x 4.89mm 的微感測器,並得到不同傳導層材質與厚度對波傳特性與質量負載靈敏度影響的結果;最後,在驅動與量測電路方面,以不同於一般使用笨重電子設備進行的頻率檢知方式,而改採用一種新的相位檢知技術,利用電子元件,包括Analog Deice公司生產的AD8302 IC作為相位檢知電路、Colpitts震盪電路作為信號源,配合阻抗匹配電路使微感測器與檢知電路達到全功率轉移,並設計相移電路以補償元件路徑與微感測的相位損失,減法器校正相位檢知電路之誤差偏移,最後成為一個易於攜帶、價格便宜、且完全獨立的自激式相位量測電路與拉幅波液體黏滯度感測器,並利用此系統量測不同黏滯度液體對於相位的變化量,進而得到精確即時的反應;經由以上實驗結果,證明本論文提出的相位量測方法與感測系統設計是可行的。

      Surface Acoustic Wave (SAW) sensors have many applications including Rayleigh wave mode chemical adsorption vapor sensors, Lamb wave mode accelerators and mass-loading Love wave mode liquid viscosity sensors for sensing and detection. Among them, Love wave mode liquid viscosity sensors use a pair of interdigital transducers (IDT) to excite and receive shear-horizontal type of surface wave propagating in a guiding solid layer on top of a half-space piezoelectric substrates. These modes are known best for liquid sensing applications. In general, Love wave sensors are used with a network analyzer to measure the inserting loss and frequency shift, which display velocity change and wave attenuation. However, the technology of frequency shift detection is difficult and insensitive. Besides, the measurement instruments are heavy and expensive, and therefore limit the applications.
      In this project, a stand-alone and a convenient electronic system is designed and developed to incorporate the 4.89mm x 4.89mm Love wave liquid viscosity sensors. Three types of guiding layers, Polymethyl methacrylate (PMMA), SiO2 and ZnO, have been tested and compared, and best fabrication parameters have been evaluated. We also propose a detection way for Love wave sensors, which is the phase information about wave propagation, along with the liquid/solid interface for determining the liquid viscosity. A stand-alone measurement unit is made with integrated circuits and printed-circuit boards, including AD8302 (Analog Device) for phase/gain detector, Texas Instrument product THS3201 (Taxas Instrument) for 80MHz and 156MHz oscillators, OPA690 for an all pass filter, OPA355 for subtraction circuits, and L-type matching network. The all pass filter and the subtraction circuits are used to compensate the phase loss and the AD8302 output level offset respectively. L-type matching network are used to transform the available power from oscillators to Love wave sensors. This new circuit unit is to replace the inconvenient and heavy instruments and to construct a complete, compact, and inexpensive sensor system for liquid viscosity measurement. Potential applications in mechanical, chemical, and biomedical fields of this sensor system will be discussed.

    中文摘要........................................................................I Abstract......................................................................III 致謝............................................................................V Contents.......................................................................VI List of Tables.................................................................IX List of Figures................................................................XI Symbols Descriptions..........................................................XVI Chapter 1 Introduction 1.1 Literatures Survey......................................................1 1.2 Motivations.............................................................5 1.3 Thesis outlines.........................................................6 Chapter 2 Theorem and Analysis 2.1 Love wave sensors.......................................................8 2.1.1 Love wave propagation in half-space solid...............................8 2.1.2 Viscosity coupling.....................................................13 2.1.3 Theoretical of phase shift.............................................16 2.2 A stand-alone phase detection device design............................18 2.2.1 Oscillator design......................................................21 2.2.2 Impedance matching network.............................................27 2.2.3 Gain/phase detector....................................................31 2.2.4 All pass filter........................................................36 2.2.5 Voltage follower and subtract circuits.................................39 Chapter 3 Experiment and Measurement 3.1 Configuration of Love wave sensors.....................................42 3.1.1 Crystal cut of the piezoelectric substrate.............................42 3.1.2 IDTs structure of Love wave sensors....................................44 3.2 Parameters of the Microfabrication for Love wave sensors...............46 3.2.1 IDTs by Microfabrication..............................................46 3.2.2 SiO2 guiding layer by e-beam..........................................48 3.2.3 ZnO guiding layer by rf-sputtering....................................50 3.2.4 PMMA guiding layer by spin coater.....................................53 3.3 Fabrication of the stand-alone phase/gain detection device.............57 3.3.1 PCB layout for the stand-alone phase/gain detection device.............57 3.3.2 Phototype of the stand-alone phase/gain detection device...............58 3.3.3 Matching network for Love wave sensors and the stand-alone phase/gain detection device.......................................................60 3.3.4 Preparation for the glycerol solution..................................63 3.4 The stand-alone liquid viscosity measurement system....................66 3.4.1 Measurement and inspection of Love wave sensors by network analyzer…..67 3.4.2 The measurement configuration of the stand-alone liquid viscosity measurement system.....................................................69 Chapter 4 Results and Discussions 4.1 The insertion loss of love wave sensors with different guiding layers...70 4.2 The resonance frequency shift of Love wave sensors with different guiding layers.........................................................74 4.3 Stand-alone liquid viscosity measurement system........................77 4.3.1 Measurement results and comparison with a commercial network analyzer...77 4.3.2 The discussions of no match for viscosity measurement with the network analyzer and the stand-alone liquid viscosity measurement system.......81 Chapter 5 Conclusions and Future Perspective 5.1 Conclusions............................................................84 5.2 Future perspective.....................................................85 References.....................................................................86 Appendix.......................................................................89 自述...........................................................................91

    [1] R. M. Lec and P. A. Lewin, "Acoustic Wave Biosensors," presented at 20th
    Annual International Conference of the IEEE Engineering in Medicine and
    Biology Society, 1998.
    [2] D. S. Ballatine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers,
    G. C. Frye, and H. Wholtjen, Acoustic wave sensors: Theory, Design and
    Physico-Chemical Application: Academic Press, 1997.
    [3] L. Rayleigh, On wave propagated along the plan surfaces of and elastic
    solid, vol. 17: Proc. London Math. Soc., 1885.
    [4] R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface
    elastic wave," Applied Physics Letters, vol. 7, pp. 314-316, 1965.
    [5] H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical
    analysis," Analytical chemistry, vol. 15, pp. 1485-1464, 1979.
    [6] A. Bryant, D. L. Lee, and J. F. Vetelino, "A surface acoustic wave gas
    detector," IEEE Ultra. Sym., pp. 171-174, 1981.
    [7] S. W. Wensel and R. M. White, "Flexural plate wave gravimetric chemical
    sensor," Sensors and Actuators, pp. 700-703, 1990.
    [8] R. M. White, D. J. Wicher, S. W. Wenzel, and E. T. Zellers, "Plate-mode
    Ultrasonic oscillator sensors," IEEE Trans. Ultra. Ferro. and Freq.
    Contr, vol. 34, pp. 162-171, 1987.
    [9] S. J. Martin and A. J. Ricco, "Characterization of SH acoustic plate mode
    liquid sensors," Sensors and Actuators, pp. 253-268, 1989.
    [10] R. L. Baser, C. A. Flory, M. T. Moy, and D. S. Solomon, "STW chemical
    sensors," IEEE Ultra. Sym. Proc., vol. 1, pp. 293-298, 1992.
    [11] J. D. Achenbach, Wave propagation in elastic solids: Elsevier, 1991.
    [12] 黎文新, "聲波感測器應用於流體特性之量測." 臺南: 國立成功大學機械研究所,2001.
    [13] J. Du, G. L. Harding, J. A. Ogilvy, P. R. Dencher, and M. Lake, "A study
    of Love wave acoustic sensors," Sensors and Actuators A, pp. 211-219,
    1996.
    [14] K. K. Zadeh, W. Wlodarski, A. Trinchi, A. Holland, and K. Galatsis, "Love
    mode SAW sensors with ZnO layer operating in gas and liquid media," IEEE
    Freq. Contr., pp. 268-272, 2002.
    [15] E. Gizel, N. J. Goddard, C. R. Lowe, and A. C. Stevenson, "A Love plate
    biosensor utilizing a polymer layer," Sensors and Actuators B, pp. 131,
    1992.
    [16] F. Herrman, M. Weihnacht, and S. Buttgenbach, "Properties of
    shear-horizontal surface acoustic waves in different layered quartz-SiO2
    structures," IEEE Ultra. Sym., pp. 335, 1999.
    [17] G. Kovacs, M. J. Vellekoop, R. Haueis, G. W. Lubking, and A. Venema, "A
    Love wave sensor for (bio)chemical sensing in liquids," Sensors and
    Actuators A, pp. 38, 1994.
    [18] J. O. Kim, The effect of a viscous fluid on Love waves in a layered
    medium: J. Acoust. Soc. Am., 1992.
    [19] T. T. Wu and T. Y. Wu, "Surface waves in coated anisotropic medium loaded
    with viscous fluid," Trans. of the ASME, pp. 262, 2000.
    [20] B. Jakoby and M. J. Vellekoop, "Viscosity sensing using a Love-wave
    device," Sensors and Actuators A, pp. 275-281, 1998.
    [21] D. A. Neamen, Electronic circuit analysis and design: Irwin, 1996.
    [22] T. L. Floyd, Electronic devices Sixth Edition: Prentic Hall, 2002.
    [23] G. Rizzoni, Principles and applications of electrical engineering: Irwin,
    1993.
    [24] 陳玉衡, "表面聲波元件製成、量測與應用." 臺南: 國立成功大學電機研究所, 2001.
    [25] M. Maddou, Fundamentals of Micro-fabrication: CRC, 1997.
    [26] W. J. Tanski, "Surface acoustic wave resonators on quartz," IEEE Trans.
    on SU, pp. 93, 1979.
    [27] T. Uno and H. Jumonji, "Optimization of quartz SAW resonator structure
    with groove gratings," IEEE Trans. on SU, vol. 29, pp. 299, 1982.
    [28] C. K. Campbell, Surface acoustic wave devices for mobile and wireless
    communication: 1998.

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE