| 研究生: |
林亮宇 Lin, Liang-Yu |
|---|---|
| 論文名稱: |
應用即時硬體模擬進行複合試驗之雛型規劃與檢討 Evaluating Prototype Design of Real-Time Hybrid Testing by Hardware-in-the-loop Simulation |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 234 |
| 中文關鍵詞: | 複合實驗 、即時硬體模擬 、主動式質量阻尼器 、線性二次調節器 、直接輸出回饋 、最佳化控制理論 、時間延遲效應 、Simulink Real-Time 、FRF 、OKID/ERA 、轉換函數 |
| 外文關鍵詞: | real-time hybrid testing, hardware-in-the-loop simulation, active mass damper, direct output feedback, optimal control theory, time delay effect, Simulink Real-Time, FRF, OKID/ERA, transfer function |
| 相關次數: | 點閱:243 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,人們對於建築物隔減震的觀念日益加深,透過結構控制系統的應用,可降低結構物因地震所造成的損害。為了證明結構控制系統的效果,將結構物以縮尺模型替代之振動台實驗為最直接之驗證方式,但是礙於研究成本與實驗空間,發展出即時振動台複合實驗,其可透過振動台而即時地呈現出受控結構的反應,但是實驗的進行仍然存在著一定的變數與不確定性,因此本文以主動式質量阻尼器為例,首先探討時間延遲對於主動控制系統的影響,接著藉由硬體模擬可即時地模擬複雜實驗系統的特性,透過即時硬體模擬進行複合實驗架構的初步規劃,並利用性能測試,檢驗真實AMD模型的工作範圍,接著利用FRF與OKID/ERA之系統識別方法得出AMD之頻率域特性與轉換函數,如此即可應用於即時硬體模擬的架構中,並與前人之複合實驗結果進行比較,以驗證識別結果的正確性。因此,透過本文之識別與測試,未來即可藉由此硬體模擬之流程與架構,對於後續之複合實驗或振動台實驗進行可行性之評估與實驗結果之預估,進而大幅地提升實驗的成功率。
In recent years, the concept of seismic isolation and vibration mitigation has deepened. Through the application of structural control systems, damage to structures caused by earthquakes can be reduced. In order to verify the effectiveness of the structure control system, shaking table test in which the structure is replaced by a scaled-down model is the most direct verification method. However, due to the cost and space limitation, the real-time hybrid testing technology is developed, which can present the response of full-scale controlled structure through the shaking table in real-time. However, there are still uncertainties in the process of the experiment. Therefore, this thesis takes the active mass damper (AMD) as an example to discuss the influence of time delay on the active control system in the beginning. Then carry out the preliminary planning of real-time hybrid testing by hardware-in-the-loop (HIL) simulation which can simulate a complex system in real-time. Afterward, conduct performance test to verify the working range of the AMD device, then use the system identification method including FRF and OKID/ERA to obtain the frequency domain performance and transfer function of the AMD. In this way, the results of the proposed framework of HIL simulation can be adopted and compared with the previous real-time hybrid testing results to verify the accuracy of the identified transfer function. Therefore, through the identification and testing in this study, the process and framework of this hardware simulation can be used to evaluate the feasibility and the results of real-time hybrid testing or shaking table test in the future. Furthermore, the probability of success in an experiment can be greatly improved.
[1] Hakuno, M., Shidawara, M., & Hara, T., “Dynamic destructive test of a cantilever beam controlled by an analog-computer”, Japan society of civil engineers, Vol. 1969, No. 171, pp. 1-9, (1969).
[2] Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H., “Non-linear earthquake response analysis of structures by a computer-actuator on-line system”, Transactions of the Architectural Institute of Japan, Vol. 229, No. 0, pp. 77-83,190, (1975).
[3] Dermitzakis, S. N., & Mahin, S. A., “Development of substructuring techniques for on-line computer controlled seismic performance testing”, University of California, Berkeley, (1985)
[4] Nakashima, M., Kato, H., & Takaoka, E., “Development of real‐time pseudo dynamic testing”, Earthquake Engineering & Structural Dynamics, Vol. 21, No. 1, pp. 79-92, (1992).
[5] Agrawal, A. K., Fujino, Y., & Bhartia, B. K., “Instability due to time delay and its compensation in active control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 22, No. 3, pp. 211-224, (1993).
[6] Inaudi, J. A., & Kelly, J. M., “A robust delay‐compensation technique based on memory”, Earthquake Engineering & Structural Dynamics, Vol. 23, No. 9, pp. 987-1001, (1994).
[7] Chung, L. L., Lin, C. C., & Lu, K. H., “Time‐delay control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 24, No. 5, pp. 687-701, (1995).
[8] Lin, C. C., Sheu, J. H., Chu, S. Y., & Chung, L. L., “Time‐delay effect and its solution for optimal output feedback control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 25, No. 6, pp. 547-559, (1996).
[9] Agrawal, A., & Yang, J., “Effect of fixed time delay on stability and performance of actively controlled civil engineering structures”, Earthquake Engineering & Structural Dynamics, Vol. 26, No. 11, pp. 1169-1185, (1997).
[10] Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W., “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures”, Engineering Structures, Vol. 21, No. 4, pp. 365-379, (1999).
[11] Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W., “Development of a real-time hybrid experimental system using a shaking table - (Proposal of experiment concept and feasibility study with rigid secondary system)”, Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, Vol. 42, No. 2, pp. 255-264, (1999).
[12] Ledin, J. A., “Hardware-in-the-loop simulation”, Embedded Systems Programming, Vol. 12, pp. 42-62, (1999).
[13] Abdalla, O. M., Hammad, S. A., & Yousef, A. H., “A framework for real time hardware in the loop simulation for control design”, Computers and Systems Engineering Department, Ain Shams University, Egypt.
[14] Chu, S. Y., Soong, T. T., Lin, C. C., & Chen, Y. Z., “Time-delay effect and compensation on direct output feedback controlled mass damper systems”, Earthquake Engineering & Structural Dynamics, Vol. 31, No. 1, pp. 121-137, (2002).
[15] Chu, S. Y., Soong, T. T., Reinhorn, A. M., Helgeson, R. J., & Riley, M. A., “Integration issues in implementation of structural control systems”, Journal of Structural Control, Vol. 9, No. 1, pp. 31-58, (2002).
[16] Chu, S. Y., Soong, T. T., & Reinhorn, A., “Real-time active control verification via a structural simulator”, Engineering Structures, Vol. 24, No. 3, pp. 343-353, (2002).
[17] Carrion, J. E., & Spencer Jr, B. F., “Model-based strategies for real-time hybrid testing”, Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, (2007)
[18] Chu, S. Y., Yeh, S. W., Lu, L. Y., & Peng, C. H., “Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation”, Earthquakes and Structures, Vol. 12, No. 4, pp. 425-436, (2017).
[19] Chu, S. Y., Lu, L. Y., & Yeh, S. W., “Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table”, Structural Control and Health Monitoring, Vol. 25, No. 3, (2018).
[20] Nakashima, M., “Hybrid simulation: An early history”, Earthquake Engineering & Structural Dynamics, Vol. 49, No. 10, pp. 949-962, (2020).
[21] 朱世禹,「直接輸出回饋之主動結構控制」,國立中興大學土木工程研究所,碩士論文,(1992)。
[22] 呂國華,「考慮時間延遲之離散時間系統最佳直接輸出回饋控制」,國立中興大學土木工程研究所,碩士論文,(1993)。
[23] 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文,(2007)。
[24] 鄒永楷,「應用伺服馬達控制平台進行主動質量阻尼器之研發與測試」,國立成功大學土木工程研究所,碩士論文,(2012)。
[25] 梁婷茹,「伺服馬達控制質量阻尼器之混合實驗」,國立成功大學土木工程研究所,碩士論文,(2013)。
[26] 賈博宇,「振動台效能對PFCMD即時複合實驗之影響探討」,國立成功大學土木工程研究所,碩士論文,(2016)。
[27] 鄧孟澤,「應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討」,國立成功大學土木工程研究所,碩士論文,(2019)。
[28] 黃智遠,「配置 LSCMD 多自由度系統之類比式硬體模擬試驗」,國立成功大學土木工程研究所,碩士論文,(2019)。