| 研究生: |
許耕翊 Hsu, Keng-Yi |
|---|---|
| 論文名稱: |
精細鋁-鋅-矽合金導線微觀組織特性與機械性質及抗氯阻抗研究 A Study of Microstructure, Mechanical Properties and Chlorination Resistance of Fine Al-Zn-Si Alloy Wires |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 鋁導線 、打線接合 、鍍層 、機械性質 、氯化 |
| 外文關鍵詞: | Aluminum wire, Wire bonding, Coating, Mechanical property, Chlorination |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
打線接合為目前最主流的封裝製程,其中使用鋁導線的封裝成本較低。然而過去使用鋁導線時,即因鋁的電遷移阻抗較低、延性偏低等因素,而限制其應用端。因此,本研究利用鋅添加、熱處理與表面處理,以改善鋁導線的性能,並擴展鋁線的應用層面。
本研究所使用的導線材料為Al-3Zn-0.3Si (AZS303) 與Al-7Zn-0.3Si (AZS703),其中AZS303另經表面鍍金製程製成AC-AZS303導線。三者進行分別進行300℃、400℃與500℃之30分鐘熱處理後發現,500℃熱處理會使AC-AZS303表面鍍金層發生反應,而經400℃熱處理即能有效提升線材延性。
氯化試驗為利用飽和之氯化鈉水溶液,將AZS303、AC-AZS303、AZS703與H400-AZS303 (經400℃ 30分鐘熱處理之AZS303) 於常溫下分別進行一、二、四小時之浸泡,結果顯示表面鍍金處理並無法幫助鋁導線提升抗氯抗性,而400℃ 30分鐘熱處理與AZS703均有抑制氯化環境下其機械性質劣化的趨勢。
打線接合試驗則是分別進行AZS303、AZS703與H400-AZS303之第二銲點打線接合之後,量測其接合強度與拉力測試後之痕跡 (Footprint) 觀察,H400-AZS303之接合強度與接合情形均為三者中最佳者,顯示其具有良好之接合性,可應用於打線接合。
Applying aluminum wire for the consideration of cost reduction, wire bonding is a dominative interconnection technique of electronic packaging industry nowadays. However, the application of aluminum wire has been confined due to its low electromigration resistance and poor ductility over the past few decades. As a result, in this study, the drawbacks of aluminum wire mentioned above are improved by zinc addition, heat treatment and surface modification for expanding its application.
The wire materials used in this study consist of AZS303 wire and AZS703 wire. The AZS303 wire was coated with a thin layer of gold in addition. After all the three wires were applied with 300℃, 400℃ and 500℃ heat treatment for 30 minutes respectively, we found that the coating of AC-AZS303 would react in the condition of 500℃ heat treatment, and the temperature of 400℃ is adequate for enhancing the ductility of aluminum wire.
For chlorination test, we immersed AZS303, AC-AZS303, AZS703 and H400-AZS303 in the saturated brine for 1 hour, 2 hours, and 4 hours at room temperature respectively. The result shows that the chlorination resistance was not enhanced by coating a thin film of gold. Both H400-AZS303 and AZS703 show the potential of inhibiting the corrosion of chlorination.
After bonding with AZS303, AZS703 and H400-AZS303 wire, the result of measuring their bonding strength by pull test and observing their footprints after pull test shows that H400 AZS303 performed the best bonding of all, and it is suitable for wire bonding process.
[1] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, Reliability study of low cost alternative Ag bonding wire with various bond pad materials. 2009 11th Electronics Packaging Technology Conference, pp. 851-857, 2009.
[2] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen, and K. J. Chen, “Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure,” Advances in Materials Science and Engineering, Vol. 2014, pp. 1–6, 2014.
[3] C. D. Breach and F. Wulff, “New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al,” Microelectronics Reliability, Vol. 44, No. 6, pp. 973–981, 2004.
[4] H. G. Kim, T. W. Lee, E. K. Jeong, W. Y. Kim, and S. H. Lim, “Effects of alloying elements on microstructure and thermal aging properties of Au bonding wire,” Microelectronics Reliability, Vol. 51, No. 12, pp. 2250–2256, 2011.
[5] M. A. Bahi, P. Lecuyer, A. Gentil, H. Fremont, J. P. Landesman, F. Christien, and R. Le Gall, “Degradation Mechanisms of Au–Al Wire Bonds During Qualification Tests at High Temperature for Automotive Applications: Quality Improvement by Process Modification,” IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 3, pp. 484–489, 2008.
[6] M. Guerdane, “Self-diffusion in intermetallic AlAu4: Molecular dynamics study down to temperatures relevant to wire bonding,” Computational Materials Science, Vol. 129, pp. 13–23, 2017.
[7] B. März, A. Graff, R. Klengel, and M. Petzold, “Interface microstructure effects in Au thermosonic ball bonding contacts by high reliability wire materials,” Microelectronics Reliability, Vol. 54, No. 9, pp. 2000–2005, 2014.
[8] H. S. Chang, K. C. Hsieh, T. Martens, and A. Yang, “The effect of Pd and Cu in the intermetallic growth of alloy Au wire,” Journal of Electronic Materials, Vol. 32, No. 11, pp. 1182–1187, 2003.
[9] G. Harman and J. Albers, “The Ultrasonic Welding Mechanism as Applied to Aluminum-and Gold-Wire Bonding in Microelectronics,” IEEE Transactions on Parts, Hybrids, and Packaging, Vol. 13, No. 4, pp. 406–412, 1977.
[10] Y. J. Lee, B. S. Suh, M. S. Kwon, and C. O. Park, “Barrier properties and failure mechanism of Ta–Si–N thin films for Cu interconnection,” Journal of Applied Physics, Vol. 85, No. 3, pp. 1927–1934, 1999.
[11] G. Khatibi, B. Weiss, J. Bernardi, and S. Schwarz, “Microstructural Investigation of Interfacial Features in Al Wire Bonds,” Journal of Electronic Materials, Vol. 41, No. 12, pp. 3436–3446, 2012.
[12] M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectronics Reliability, Vol. 55, No. 6, pp. 961–968, 2015.
[13] S. Park, S. Nagao, T. Sugahara, and K. Suganuma, “Mechanical stabilities of ultrasonic Al ribbon bonding on electroless nickel immersion gold finished Cu substrates,” Japanese Journal of Applied Physics, Vol. 53, No. 4S, pp. 1–6, 2014.
[14] K. M. Chu, “Electronic Flame-Off Mechanism and Wire Bonding Reliability of Fine Zn-Coated Al-Si Wires,” Master Thesis, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[15] F. Y. Hung, T. S. Lui, K. M. Chu, and Y. W. Tseng, “Aluminium Wires Have the Free Air Balls (FABs): Electronic Flame-Off, Fracture Strength, Electrical Properties, and Bonding Characteristics of Nano Zn Film Al–Si Bonding Wires,” Metals, Vol. 7, No. 5, pp. 1–12, 2017.
[16] D. Flötotto, Z. M. Wang, and E. J. Mittemeijer, “On the structural development during ultrathin amorphous Al2O3 film growth on Al(111) and Al(100) surfaces by thermal oxidation,” Surface Science, Vol. 633, pp. 1–7, 2015.
[17] W. Qin, R. Doyle, T. Scharr, M. Shah, M. Kottke, G. Chen, and D. Theodore, “Surface oxide evolution on Al–Si bond wires for high-power RF applications,” Microelectronic Engineering, Vol. 75, No. 1, pp. 111–116, 2004.
[18] T. S. Shih and Z. B. Liu, “Thermally-Formed Oxide on Aluminum and Magnesium,” Materials Transcations, Vol. 47, No. 5, pp. 1347–1353, 2006.
[19] P. S. Chauhan, M. G. Pecht, Z. W. Zhong, and A. Choubey, Copper Wire Bonding. New York, USA: Springer, 2014.
[20] A. C. Fischer, J. G. Korvink, N. Roxhed, G. Stemme, U. Wallrabe, and F. Niklaus, “Unconventional applications of wire bonding create opportunities for microsystem integration,” Journal of Micromechanics and Microengineering, Vol. 23, No. 8, pp. 1–18, 2013.
[21] A. Coucoulas, Hot Work Thermosonic Bonding: A Method of Facilitating Metal Flow by Restoration Processes. IEEE 20th Electronic Compnents Conference, pp. 549–556, 1970.
[22] O. L. Anderson, H. Christensen, and P. Andreatch, “Technique for Connecting Electrical Leads to Semiconductors,” Journal of Applied Physics, Vol. 28, No. 8, pp. 923–924, 1957.
[23] H. H. Tsai, J. D. Lee, C. H. Tsai, H. C. Wang, C. C. Chang, and T. H. Chuang, An innovative annealing-twinned Ag-Au-Pd bonding wire for IC and LED packaging. 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 243–246, 2012.
[24] G. G. Harman, Wire Bonding In Microelectronics, 3rd ed. New Work, USA: McGraw-Hill, 2010.
[25] C. Lu, Review on silver wire bonding. 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 226–229, 2013.
[26] M. Schneider-Ramelow, U. Geißler, S. Schmitz, W. Grübl, and B. Schuch, “Development and Status of Cu Ball/Wedge Bonding in 2012,” Journal of Electronic Materials, Vol. 42, No. 3, pp. 558–595, 2013.
[27] M. Schneider-Ramelow and C. Ehrhardt, “The reliability of wire bonding using Ag and Al,” Microelectronics Reliability, Vol. 63, pp. 336–341, 2016.
[28] I. Qin, H. Xu, B. Milton, N. Mendoza, H. Clauberg, B. Chylak, H. Abe, D. Kang, Y. Endo, M. Osaka, and S. Nakamura, Process optimization and reliability study for Cu wire bonding advanced nodes. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 1523–1528, 2014.
[29] Z. W. Zhong, “Wire bonding using copper wire,” Microelectronics International, Vol. 26, No. 1, pp. 10–16, 2009.
[30] S. Murali, N. Srikanth, and C. J. Vath, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging,” Materials Research Bulletin, Vol. 38, No. 4, pp. 637–646, 2003.
[31] H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, and Y. J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, pp. 367–374, 2003.
[32] S. Murali, N. Srikanth, and C. J. Vath, “Grains, deformation substructures, and slip bands observed in thermosonic copper ball bonding,” Materials Characterization, Vol. 50, No. 1, pp. 39–50, 2003.
[33] N. Srikanth, S. Murali, Y. M. Wong, and C. J. Vath, “Critical study of thermosonic copper ball bonding,” Thin Solid Films, Vol. 462-463, pp. 339–345, 2004.
[34] S. Kaimori, T. Nonaka, and A. Mizoguchi, “The development of Cu bonding wire with oxidation-resistant metal coating,” IEEE Transactions on Advanced Packaging, Vol. 29, No. 2, pp. 227–231, 2006.
[35] K. Toyozawa, K. Fujita, S. Minamide, and T. Maeda, “Development of copper wire bonding application technology,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, pp. 667–672, 1990.
[36] P. S. Ho and H. B. Huntington, “Electromigration and void observation in silver,” Journal of Physics and Chemistry of Solids, Vol. 27, No. 8, pp. 1319–1329, 1966.
[37] C. W. Hsu, “The Study of Wire Bonding Reliability of Fine Ag-Pd-Au-Pt Alloy Wire after Sulfidation and Chlorination Tests,” Master thesis, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.
[38] L. Volpe and P. J. Peterson, “The atmospheric sulfidation of silver in a tubular corrosion reactor,” Corrosion Science, Vol. 29, No. 10, pp. 1179–1196, 1989.
[39] L. Zhang, Y. Zhu, H. Chen, K. Leung, Y. Wu, and J. Wu, “Failure analysis on reflector blackening between lead frame electrodes in LEDs under WHTOL test,” Microelectronics Reliability, Vol. 55, No. 5, pp. 799–806, 2015.
[40] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang, and Y. P. Wang, Silver alloy wire bonding. 2012 IEEE 62nd Electronic Components and Technology Conference, pp. 1163–1168, 2012.
[41] C. H. Cheng, H. L. Hsiao, S. I. Chu, Y. Y. Shieh, C. Y. Sun, and C. Peng, Low cost silver alloy wire bonding with excellent reliability performance. 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 1569–1573, 2013.
[42] S. K. Prasad, Advanced Wirebond Interconnection Technology. Boston, USA: Kluwer Academic Publishers, 2004.
[43] M.A.A. Mohd Salleh, S. D. McDonald, H. Yasuda, A. Sugiyama, and K. Nogita, “Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces,” Scripta Materialia, Vol. 100, pp. 17–20, 2015.
[44] K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, D. W. Qiu, and T. L. Chou, “Microstructure and electrical mechanism of Sn–xAg–Cu PV-ribbon for solar cells,” Microelectronic Engineering, Vol. 116, pp. 33–39, 2014.
[45] H. T. Chen, C. J. Hang, X. Fu, and M. Y. Li, “Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing,” Journal of Electronic Materials, Vol. 44, No. 10, pp. 3880–3887, 2015.
[46] H. K. Yan, “The influence of Zn on the mechanical property of Al-Zn alloy,” Master thesis, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2012.
[47] K. Wada, K. Takeshima, T. Uesugi, Y. Takigawa, and K. Higashi, “Effects of Solute Fe, Zn and Mg on Recrystallization in Aluminum,” Materials Transcations, Vol. 57, No. 3, pp. 329–334, 2016.
[48] W. J. Zhang, W. B. Yi, and J. Wu, “Electromigration in Al Interconnects and the Challenges in Ultra-deep Submicron Technology,” Acta Physica Sinica, Vol. 55, No. 10, pp. 5424–5434, 2006.
[49] I. Lum, M. Mayer, and Y. Zhou, “Footprint study of ultrasonic wedge-bonding with aluminum wire on copper substrate,” Journal of Electronic Materials, Vol. 35, pp. 433–442, 2006.
[50] M. N. Zulkifli, S. Abdullah, N. K. Othman, and A. Jalar, “Some thoughts on bondability and strength of gold wire bonding,” Gold Bulletin, Vol. 45, No. 3, pp. 115–125, 2012.
[51] H. Y. Leong, B. K. Yap, N. Khan, M. R. Ibrahim, L. C. Tan, and M. Faiz, “Stitch bond strength study in insulated Cu wire bonding,” Materials Research Innovations, Vol. 18, No. sup6, pp. S6-264–S6-268, 2014.
校內:2024-01-01公開