| 研究生: |
鮑俊宏 Pao, Chun-Hung |
|---|---|
| 論文名稱: |
河口水動力及泥沙運移之數值模擬研究-以曾文溪為例 A Numerical Investigation of Hydrodynamics and Sediment Transport in River Mouths: A case study of the Zengwen River, Taiwan |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 河口至內陸棚 、泥沙傳輸 、曾文溪 、異重流 、ROMS |
| 外文關鍵詞: | from river mouth to inner continental shelf, sediment transport, Zengwen River, gravity flow, ROMS |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣多數河川於颱洪期間輸出大量的沉積物,對於近岸或是鄰近海域的地形變遷有著重大影響,然受限於現場觀測的種種困難如儀器容易遺失、空間點位不足等影響,對於河口複雜的近岸水動力交互作用與供應沿岸漂沙之運移過程仍待解析,加上海底管線部份區域懸空成因未明,因此本研究透過模式分離或結合曾文溪出海口波浪、潮汐以及洪水入流之相關營力,將極其複雜的近岸交互作用分項探討。本研究使用ROMS數值模式模擬曾文溪口近岸水動力,其結果與河口觀測資料具良好一致性。模式結果顯示,單純潮汐作用時,僅於河口主深槽處產生一較大流速,且退潮流速大於漲潮,因此主深槽處餘流方向為離岸。再者,曾文溪口有兩處符合自加速異重流的地點(底床坡度>0.005),分別為曾文溪舊河道,以及曾文水道。僅考慮極端流量作用時,河口表層產生類似射流的現象,曾文水道由於正對河口的直線方向,將產生異重流且作用時間長,而舊河道因缺乏潮汐的對流作用,未產生異重流。若考慮極端流量與潮汐交互作用下,河口並不會發生射流現象,漲潮時刻北向的潮流將高濃度的懸浮沉積物濃度攜往舊河道區域,有助於運移泥沙至曾文溪舊河道,進而產生異重流。當考慮波浪、極端流量與潮汐,三者交互作用下,西南向波浪造成的沿岸流,抑制懸浮沉積物濃度西向傳輸,造成異重流發生時程縮短且次數變少。模擬過程另顯示舊河道於極端流量與潮汐交互作用時,先後發生2次異重流事件,終將水深100公尺處之舊河道終點刷深超過1公尺,若異重流造成底床侵蝕致使海底管線懸空,則應優先加強裸露兩端抗彎強度以及管線底床抗沖蝕等保護。
The main objectives of this study are to utilize numerical model ROMS to conduct qualitative research on sediment transport from the Zengwen River mouth to the inner continental shelf under base flow and extreme flood conditions. The simulated water levels and flow velocities agree well with field observations. The complex nearshore interactions are examined using scenario simulations and considering the wave, tide, and extreme flood forces at the Zengwen River mouth. The modeling results reveal that in the only tidal force scenario, a relatively high flow velocity has appeared only in the main channel of the river mouth, where the velocity of the ebb tide is more significant than the flood tide, resulting in a net offshore residual flow. Additionally, there are two locations near the Zengwen River mouth where gravity flow is more likely to generate due to self-acceleration: the old river channel and the Zengwen waterway. When considering only extreme flood conditions, the river mouth exhibits jet-like flow characteristics, particularly in the Zengwen waterway, which experiences prolonged gravity flow due to its alignment with the main river channel. Conversely, lacking tidal advection therefore gravity flow does not generate in the old river channel. Under the interaction of extreme flood and tide, jet-like flow does not appear in the river mouth. During flood tide, northward tidal currents transport high suspended sediment concentration(SSC) to the old river channel, promoting sediment transport towards the old river channel and generating gravity flow. However, the Typhoon-induced southwest-directed waves causes wave-induced currents that constrain the westward transport of SSC, reducing the occurrence and duration of gravity flow. Eventually, model results indicate that gravity flow events in the old river channel lead to substantial erosion, where the seabed at a depth of 100 meters is eroded by over 1 meter.
1. Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions - 1. Model description and validation. Journal of Geophysical Research-Oceans, 104(C4), 7649-7666. https://doi.org/Doi 10.1029/98jc02622
2. Bruschi, R., Bughi, S., Spinazze, M., Torselletti, E., & Vitali, L. (2006). Impact of debris flows and turbidity currents on seafloor structures. Norwegian Journal of Geology, 86(3), 317-336.
3. Carter, L., Milliman, J. D., Talling, P. J., Gavey, R., & Wynn, R. B. (2012). Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophysical Research Letters, 39. https://doi.org/https://doi.org/10.1029/2012GL051172
4. Chen, S. N., Geyer, W. R., & Hsu, T. J. (2013). A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. Journal of Geophysical Research-Oceans, 118(5), 2702-2718. https://doi.org/10.1002/jgrc.20209
5. Chen, Y. C., Chang, K. T., Chiu, Y. J., Lau, S. M., & Lee, H. Y. (2013). Quantifying rainfall controls on catchment-scale landslide erosion in Taiwan. Earth Surface Processes and Landforms, 38(4), 372-382. https://doi.org/10.1002/esp.3284
6. Chien, H., Chiang, W. S., Kao, S. J., Liu, J. T., Liu, K. K., & Liu, P. L. F. (2011, Dec). Sediment Dynamics Observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait Oceanography
7. Chien, H., Chiang, W. s., Liu, P. L. F., & Liu, K. K. (2009, 11-14 May 2009). Measurements of high concentration sediment plume in the estuary with strong tidal currents. OCEANS 2009-EUROPE
8. Christie, M. C., Dyer, K. R., & Turner, P. (1999). Sediment flux and bed level measurements from a macro tidal mudflat. Estuarine Coastal and Shelf Science, 49(5), 667-688. https://doi.org/DOI 10.1006/ecss.1999.0525
9. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., & Stark, C. P. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736. https://doi.org/10.1130/G20639.1
10. Dadson, S. J., Hovius, N., Chen, H. G., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., & Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. https://doi.org/10.1038/nature02150
11. Davis, R. A., & Hayes, M. O. (1984). What Is a Wave-Dominated Coast. Marine Geology, 60(1-4), 313-329. https://doi.org/Doi 10.1016/0025-3227(84)90155-5
12. Dean, R. G., & Dalrymple, R. A. (2002). Coastal processes : with engineering applications. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511754500
13. Deng, K., Yang, S. Y., Bi, L., Chang, Y. P., Su, N., Frings, P., & Xie, X. L. (2019). Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales. Earth and Planetary Science Letters, 505, 96-109. https://doi.org/10.1016/j.epsl.2018.10.012
14. Geyer, W. R., Ralston, D. K., & Chen, J. L. (2020). Mechanisms of Exchange Flow in an Estuary With a Narrow, Deep Channel and Wide, Shallow Shoals. Journal of Geophysical Research-Oceans, 125(12). https://doi.org/10.1029/2020JC016092
15. Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S. J., Lee, T. Y., & Chen, J. (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36(6), 483-486. https://doi.org/10.1130/G24624a.1
16. Green, M. O., Black, K. P., & Amos, C. L. (1997). Control of estuarine sediment dynamics by interactions between currents and waves at several scales. Marine Geology, 144(1-3), 97-116. https://doi.org/Doi 10.1016/S0025-3227(97)00065-0
17. Green, M. O., & Coco, G. (2014). Review of wave-driven sediment resuspension and transport in estuaries. Reviews of Geophysics, 52(1), 77-117. https://doi.org/10.1002/2013rg000437
18. Hayes, M. (1979). Barrier island morphology as a function of wave and tide regime. In ‘Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico’.(Ed. SP Leatherman.) pp. 1–29. In: Academic Press: New York.
19. Hayes, M. O. (1975). Morphology of Sand Accumulations in Estuaries. In, CRONIN, LE (ed.), Estuarine Research. New York, Academic Press, 2, 3-22.
20. Hedström, K. S. (2016). Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model.
21. Hilton, R. G., Galy, A., Hovius, N., Chen, M. C., Horng, M. J., & Chen, H. Y. (2008). Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1(11), 759-762. https://doi.org/10.1038/ngeo333
22. Hong, E., Huang, T. C., & Yu, H. S. (2004). Morphology and dynamic sedimentology in front of the retreating Tsengwen Delta, southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 15(4), 565-587. https://doi.org/Doi 10.3319/Tao.2004.15.4.565(T)
23. Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. B., Ku, C. Y., & Sibuet, J. C. (2008). Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 19(6), 767-772. https://doi.org/10.3319/Tao.2008.19.6.767(Pt)
24. Kao, S. J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J. C., Hsu, S. C., Sparkes, R., Liu, J. T., Lee, T. Y., Yang, J. Y. T., Galy, A., Xu, X., & Hovius, N. (2014). Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2(1), 127-139. https://doi.org/10.5194/esurf-2-127-2014
25. Kao, S. J., & Milliman, J. D. (2008). Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. The Journal of Geology, 116(5), 431-448. https://doi.org/10.1086/590921
26. Kuehl, S. A., Alexander, C. R., Blair, N. E., Harris, C. K., Marsaglia, K. M., Ogston, A. S., Orpin, A. R., Roering, J. J., Bever, A. J., Bilderback, E. L., Carter, L., Cerovski-Darriau, C., Childress, L. B., Corbett, D. R., Hale, R. P., Leithold, E. L., Litchfield, N., Moriarty, J. M., Page, M. J., . . . Walsh, J. P. (2016). A source-to-sink perspective of the Waipaoa River margin. Earth-Science Reviews, 153, 301-334. https://doi.org/10.1016/j.earscirev.2015.10.001
27. Lee, J., Liu, J. T., Hung, C. C., Lin, S., & Du, X. Q. (2016). River plume induced variability of suspended particle characteristics. Marine Geology, 380, 219-230. https://doi.org/10.1016/j.margeo.2016.04.014
28. Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P., & Lines, M. (2008). Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms, 33(9), 1354-1373. https://doi.org/10.1002/esp.1716
29. Liu, J. T., Chao, S. Y., & Hsu, R. T. (2000). The influence of suspended sediments on the plume of a small mountainous river. Journal of Coastal Research, 16(2), 498-500.
30. Liu, J. T., Hsu, R. T., Hung, J. J., Chang, Y. P., Wang, Y. H., Rendle-Buhring, R. H., Lee, C. L., Huh, C. A., & Yang, R. J. (2016). From the highest to the deepest: The Gaoping River-Gaoping Submarine Canyon dispersal system. Earth-Science Reviews, 153, 274-300. https://doi.org/10.1016/j.earscirev.2015.10.012
31. Liu, J. T., Kao, S. J., Huh, C. A., & Hung, C. C. (2013). Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area. Annual Review of Marine Science, Vol 5, 5, 47-68. https://doi.org/10.1146/annurev-marine-121211-172307
32. Liu, J. T., & Lin, H. L. (2004). Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207(1-4), 55-81. https://doi.org/10.1016/j.margeo.2004.03.015
33. Liu, J. T., Wang, Y. H., Yang, R. J., Hsu, R. T., Kao, S. J., Lin, H. L., & Kuo, F. H. (2012). Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research-Oceans, 117. https://doi.org/10.1029/2011jc007630
34. Liu, J. T., Yuan, P. B., & Hung, J. J. (1998). The coastal transition at the mouth of a small mountainous river in Taiwan. Sedimentology, 45(5), 803-816.
35. Masselink, G., Hughes, M. G., & Knight, J. (2011). Introduction to coastal processes and geomorphology (2nd edition ed.). Hodder Education. https://doi.org/https://doi.org/10.4324/9780203785461
36. Middleton, G. V. (1993). Sediment Deposition from Turbidity Currents. Annual Review of Earth and Planetary Sciences, 21(1), 89-114. https://doi.org/10.1146/annurev.ea.21.050193.000513
37. Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean : a global synthesis. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9780511781247
38. Milliman, J. D., & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese rivers. Journal of Geology, 113(5), 503-516. https://doi.org/Doi 10.1086/431906
39. Milliman, J. D., Lee, T. Y., Huang, J. C., & Kao, S. J. (2017). Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspendedand dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004. Geochimica Et Cosmochimica Acta, 205, 272-294. https://doi.org/10.1016/j.gca.2017.02.015
40. Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., & Lin, Y. C. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782. https://doi.org/10.1130/G23760a.1
41. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic Tectonic Control of Sediment Discharge to the Ocean - the Importance of Small Mountainous Rivers. Journal of Geology, 100(5), 525-544. https://doi.org/Doi 10.1086/629606
42. Mulder, T., & Syvitski, J. P. M. (1995). Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. Journal of Geology, 103(3), 285-299. https://doi.org/Doi 10.1086/629747
43. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6-8), 861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
44. Mulhern, J. S., Johnson, C. L., & Martin, J. M. (2017). Is barrier island morphology a function of tidal and wave regime? Marine Geology, 387, 74-84. https://doi.org/10.1016/j.margeo.2017.02.016
45. Nayak, K., Lin, A. T. S., Huang, K. F., Liu, Z. F., Babonneau, N., Ratzov, G., Pillutla, R. K., Das, P., & Hsu, S. K. (2021). Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 814. https://doi.org/10.1016/j.tecto.2021.228974
46. Olabarrieta, M., Geyer, W. R., & Kumar, N. (2014). The role of morphology and wave-current interaction at tidal inlets: An idealized modeling analysis. Journal of Geophysical Research-Oceans, 119(12), 8818-8837. https://doi.org/10.1002/2014jc010191
47. Pao, C. H., Chen, J. L., Su, S. F., Huang, Y. C., Huang, W. H., & Kuo, C. H. (2021). The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth. Journal of Marine Science and Engineering, 9(3). https://doi.org/10.3390/jmse9030333
48. Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self-Accelerating Turbidity Currents. Journal of Fluid Mechanics, 171, 145-181. https://doi.org/Doi 10.1017/S0022112086001404
49. Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., & Wang, D. B. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earths Future, 3(6), 159-181. https://doi.org/10.1002/2015ef000298
50. Posamentier, H. W., & Walker, R. G. (2006). Facies models revisited. In SEPM special publication no. 84. SEPM Society for Sedimentary Geology.
51. Ralston, D. K., & Stacey, M. T. (2007). Tidal and meteorological forcing of sediment transport in tributary mudflat channels. Continental Shelf Research, 27(10-11), 1510-1527. https://doi.org/10.1016/j.csr.2007.01.010
52. Romdani, A., Chen, J. L., Chien, H., Lin, J. H., Liao, C. Y., & Hou, C. C. (2023). Downdrift Port Siltation Adjacent to a River Mouth: Effects of Mesotidal Conditions and Typhoon. Journal of Waterway Port Coastal and Ocean Engineering, 149(2). https://doi.org/10.1061/Jwped5.Wweng-1940
53. Sanford, L. P. (1994). Wave-Forced Resuspension of Upper Chesapeake Bay Muds. Estuaries, 17(1b), 148-165. https://doi.org/Doi 10.2307/1352564
54. Sequeiros, O. E., Mosquera, R., & Pedocchi, F. (2018). Internal Structure of a Self-Accelerating Turbidity Current. Journal of Geophysical Research-Oceans, 123(9), 6260-6276. https://doi.org/10.1029/2018jc014061
55. Sequeiros, O. E., Naruse, H., Endo, N., Garcia, M. H., & Parker, G. (2009). Experimental study on self-accelerating turbidity currents. Journal of Geophysical Research-Oceans, 114. https://doi.org/10.1029/2008jc005149
56. Sheldon, J. E., & Alber, M. (2006). The calculation of estuarine turnover times using freshwater fraction and tidal prism models: A critical evaluation. Estuaries and Coasts, 29(1), 133-146. https://doi.org/Doi 10.1007/Bf02784705
57. Speer, P. E., & Aubrey, D. G. (1985). A Study of Non-Linear Tidal Propagation in Shallow Inlet Estuarine Systems .2. Theory. Estuarine Coastal and Shelf Science, 21(2), 207-224. https://doi.org/Doi 10.1016/0272-7714(85)90097-6
58. Tagliapietra, D., Sigovini, M., & Ghirardini, A. V. (2009). A review of terms and definitions to categorise estuaries, lagoons and associated environments. Marine and Freshwater Research, 60(6), 497-509. https://doi.org/10.1071/Mf08088
59. Tsai, S. D., Chen, J. L., Hsu, W. Y., Tsai, W. Z., & Romdani, A. (2023a). A numerical investigation of the transport process of density currents over steep slopes and its implications for subsea cable breaks. Ocean Engineering, 269. https://doi.org/10.1016/j.oceaneng.2022.113446
60. Tsai, S. D., Lin, Y. C., Romdani, A., Chen, J. L., Hsu, R. T., & Liu, J. T. (2023b). On the occurrence of low concentration hyperpycnal river plumes in a small mountainous river-canyon system. Continental Shelf Research, 255. https://doi.org/10.1016/j.csr.2023.104932
61. Tsai, Y. L. S. (2022). Monitoring 23-year of shoreline changes of the Zengwun Estuary in Southern Taiwan using time-series Landsat data and edge detection techniques. Science of the Total Environment, 839. https://doi.org/10.1016/j.scitotenv.2022.156310
62. Wang, F. W., Dai, Z. L., Nakahara, Y., & Sonoyama, T. (2018). Experimental study on impact behavior of submarine landslides on undersea communication cables. Ocean Engineering, 148, 530-537. https://doi.org/10.1016/j.oceaneng.2017.11.050
63. Wang, H. J., Bi, N. S., Wang, Y., Saito, Y., & Yang, Z. S. (2010). Tide-modulated hyperpycnal flows off the Huanghe (Yellow River) mouth, China. Earth Surface Processes and Landforms, 35(11), 1315-1329. https://doi.org/10.1002/esp.2032
64. Wang, Z., Jeuken, C., & De Vriend, H. (1999). Tidal asymmetry and residual sediment transport in estuaries. Delft Hydraulics report Z2749.
65. Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., & Arango, H. G. (2008). Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10), 1284-1306. https://doi.org/10.1016/j.cageo.2008.02.012
66. Warrick, J. A. (2014). Eel River margin source-to-sink sediment budgets: Revisited. Marine Geology, 351, 25-37. https://doi.org/10.1016/j.margeo.2014.03.008
67. Warrick, J. A. (2020). Littoral Sediment From Rivers: Patterns, Rates and Processes of River Mouth Morphodynamics. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00355
68. Warrick, J. A., & Milliman, J. D. (2003). Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets. Geology, 31(9), 781-784. https://doi.org/Doi 10.1130/G19671.1
69. Winterwerp, J. C. (2001). Stratification effects by cohesive and noncohesive sediment. Journal of Geophysical Research-Oceans, 106(C10), 22559-22574. https://doi.org/Doi 10.1029/2000jc000435
70. Yu, H., Wu, Y., Zhang, J., Deng, B., & Zhu, Z. Y. (2011). Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River. Journal of Geophysical Research-Earth Surface, 116. https://doi.org/10.1029/2011jf002012
71. Zakeri, A. (2009). Submarine debris flow impact on suspended (free-span) pipelines: Normal and longitudinal drag forces. Ocean Engineering, 36(6-7), 489-499. https://doi.org/10.1016/j.oceaneng.2009.01.018
72. Zavala, C. (2020). Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography-English, 9. https://doi.org/10.1186/s42501-020-00065-x
73. 文展權、李皇章(2005)。中油公司永安至通霄海底管線懸空外部檢查之研究。石油季刊,41(1),199-209。
74. 台江國家公園(2021)。地理變遷. Retrieved 2023/04/14 from https://www.tjnp.gov.tw/cp.aspx?n=359
75. 交通部運輸研究所(2021)。2021年港灣海氣象觀測資料統計年報(8港域觀測波浪資料)。
76. 交通部運輸研究所(2022)。110年主要商港波流觀測與特性分析。
77. 行政院國家科學委員會(2010)。莫拉克颱風科學報告。
78. 林宗儀(1997)。頂頭額汕南北兩側之漂沙活動與海岸作用差異。第十九屆海洋工程研討會論文集,547-552。
79. 邵廣昭(1999)。曾文溪口海岸地區陸海交互作用之研究。全球變遷通訊雜誌,21,10-21。
80. 洪奕星、蔡政翰、歐俊宏、曾信勝、遲建業(1995)。曾文溪三角洲海域季節性沉積物之傳輸。第十八屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集。
81. 張瑞津、石再添、陳翰霖(1996)。台灣西南部台南海岸平原地形變遷之研究。師大地理研究報告。
82. 莊介瑋(2014)。臺灣台南外海正斷層以及近代沉積現象研究。
83. 黃郁晴(2020)。波浪對河口沉積過程影響之數值研究。
84. 經濟部水利署(2014)。曾文溪水系曾文溪治理規劃檢討。
85. 經濟部水利署(2020)。臺南市一級海岸防護計畫。
86. 經濟部水利署(2021)。水文年報。
87. 經濟部水利署水利規劃試驗所(2016)。曾文溪河系河川情勢調查總報告。
88. 經濟部水利署第六河川局(2017)。曾文溪河口輸砂對鄰近海岸之影響評估。
89. 經濟部水利署第六河川局(2019)。曾文溪輸砂對鄰近海岸砂源補充監測。
90. 詹森、江文山(1997)。台灣西南海岸頂頭額汕南北兩側海象之差異。第十九屆海洋工程研討會論文集,461-467。