| 研究生: |
侯彥嘉 Hou, Yan-Jia |
|---|---|
| 論文名稱: |
奈米碳管強度及勁度之估測 Estimation of Strength and Stiffness of Carbon Nanotubes |
| 指導教授: |
胡潛濱
Hwu, Chyanbin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 奈米碳管 、楊氏係數 、浦松比 、屈服強度 |
| 外文關鍵詞: | Carbon nanotubes, yield strength |
| 相關次數: | 點閱:158 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
題 目: 奈米碳管強度及勁度之估測
研 究 生: 侯彥嘉
指導教授: 胡潛濱
奈米碳管為目前新興的補強材料,它具有優秀的機械性質,如高強度、高韌性、重量輕等特性;本文主要結合有限元素法及分子動力學去估測其機械性質,參考相關文獻提出的方法並做修改。文中使用有限元素軟體ANSYS裡樑元素來模擬連結相鄰兩碳原子之共價鍵,導入modified Morse potential 為共價鍵中的勢能函數,而層間凡德瓦力則模擬成彈簧元素。藉由非線性樑理論推導出樑元素之材料性質,再由軟體模擬碳管並計算整體的機械性質及估測整體強度。從結果得知,不同形態的單壁奈米碳管其楊氏係數約為1-1.2 TPa左右、浦松比約為0.17-0.25左右,而降伏強度則落在20-30 GPa範圍內。參考其他文獻的數值比較,本文結果有一定程度的吻合;顯示研究方法有相當程度的正確性與可靠性。在極限強度方面,因未考慮Stone-Wales defect 等結構變化,故數值結果皆小於相關文獻。
本文也以有限元素法的觀點在機械性質方面做討論,將模擬共價鍵之樑元素做切割並增加元素量來做收斂性分析,文中也討論奈米碳管的長徑比對機械性質的影響,比較兩者的差異性,其結果確定已收斂(<0.5%)。
ABSTRACT
Subject: Estimation of Strength and Stiffness of Carbon Nanotubes
Graduate: Yan-Jia Hou
Advisors: Chyanbin Hwu
Since its discovery, the superior properties of carbon nanotubes (CNTs),such as high strength, toughness and light weight, makes it become a popular reinforcing material. Our purpose is to estimate its nonlinear mechanical properties by combining Finite Element Method and Molecular Dynamics. According to many researches, the covalent bonds between two nearest-neighboring atoms are simulated as beam elements. The beam properties of the finite element model are obtained from in the modified Morse interatomic potential, and the Young's modulus, Poisson's ratio, Yield strength and Ultimate strength can then be estimated from the plotted stress-strain relation. Although most of the predicted results are in good agreement with the existing data, there is a slight difference in ultimate strength. The difference can be accepted since our simulation is applied to defect-free (without Stone-Wales defect).
The effects of tube type, axial length and element size on the mechanical properties are also discussed. On our investigations, the Young’s modulus ranges from 1 to 1.2 TPa, the Poisson’s ratio from 0.17 to 0.25 and the yield strength from 20 to 30 GPa.
[1] Iijima, S., “Helical Microtubules of Graphitic Carbon, ”Nature, Vol. 354, pp.56-58, 1991.
[2] Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, ”Science, Vol. 287, pp.637-640, 2000.
[3] Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., St ckli, T., Burnham, N. A., Forr , L., “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, ” Phys. Rev. Lett., Vol.82, pp.944-947, 1999.
[4] Krishnan, A., Dujardin, E., Ebbesen, T. W., “Young's Modulus of Single-Walled Nanotubes, ”Phys. Rev. B., pp.14013-14019, 1998.
[5] Wong, E. W., Sheehan, P. E., Lieber, C. M., “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, ” Science, pp.1971-1975, 1997.
[6] Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M., “Exceptionally high Young's modulus observed for individual carbon nanotubes, ”Nature, Vol. 381, pp.678-680, 1996.
[7] Bellucci, S., “Carbon nanotubes: Physics and applications, ”Physica Status Solid, Vol. 2, pp.34-47, 2005.
[8] Bao, W. X., Zhu, C. C., Cui, W. Z., “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics, ”Physica B, Vol. 352, pp.156-163, 2004.
[9] Walters, D., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., Smalley, R. E., “Elastic strain freely suspended single-walled carbon nanotube rope, ” Phys. Rev. Lett., Vol. 74, pp. 3803, 1999.
[10] Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., Science of fullerence & carbon nanotubes, San Diego:Academic Press, 1996.
[11] Lu, J. P., “Elastic Properties of Carbon Nanotubes and Nanoropes, ”Phys. Rev. Lett., Vol. 79, pp. 1297-1300, 1997.
[12] Hernandez, E., Goze, C., Bernier, P., Rubio, A., “Elastic properties of C and BxCyNz composite nanotubes, ”Phys. Rev. Lett., Vol. 80, pp. 4502, 1998.
[13] Tersoff, J., “Empirical interatomic potential for carbon, with applications to amorphous carbon, ”Phys. Rev. Lett., Vol. 61, pp. 2879, 1988.
[14] Brenner, D. W., “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, ”Phys. Rev. B., pp. 9458, 1990.
[15] Sun, H., “COMPASS: An ab initial forcefield optimized for condensed-phase applications, ”Journal of physics and chemistry B, Vol. 102, pp. 7338, 1998.
[16] Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, ”J. Phys.: Condens. Matter, Vol. 14, pp. 783-802, 2002.
[17] Belytschko, T., Xiao, S. P., Schatz, G. C., Ruoff, R. S., “Atomistic simulations of nanotube fracture, ”Phys. Rev. B., Vol. 65, pp. 235430, 2002.
[18] Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R. O., “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, ”Materials Science and Engineeringr., Vol. 344, pp. 173-178, 2002.
[19] Wei, C., Cho, K., Srivastava, D., “Tensile strength of carbon nanotubes under realistic temperature and strain rate, ”Phys. Rev. B., Vol. 67, pp. 115407, 2003.
[20] Xiao, J. R., Gama, B. A., Gillespie, J. W., “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,”International Journal of Solids and Structures, Vol. 42, pp. 3075-3092, 2005.
[21] Liew,K.M.,He, X.Q., Wong, C.H.,“On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, ” Acta Materialia, Vol. 52, pp.2521-2527, 2004.
[22] Tserpes,K.I., Papanikos,P., Tsirkas, S.A.,“A progressive fracture model for carbon nanotubes, ”Composites: Part B, Vol. 37,pp. 662–669, 2006.
[23] Duan,W.H., Wang,Q., Liew, K.M., He, X.Q.,“Molecular mechanics modeling of carbon nanotube fracture, ”Carbon, Vol.45,pp. 1769–1776, 2007.
[24] Wernik, J. M., Meguid, S. A., “Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes,”Acta Mech, Vol. 212, pp.167-179, 2009.
[25] Baykasoglu, C., Mugan, A., “Nonlinear fracture analysis of single-layer graphene sheets, ”Engineering Fracture Mechanics, Vol. 96, pp. 241-250, 2012.
[26] Li, C., Chou, T. W., “A structural mechanics approach for the analysis of carbon nanotubes, ”International Journal of Solids and Structures, Vol. 40, pp. 2489-2499, 2003.
[27] 劉宇揚, “多壁奈米碳管力學性質之估測”, 國立成功大學航空太空研究所碩士論文 2007.
[28] 徐偉盛, “以分子動力學及原子力顯微鏡估測單壁奈米碳管之楊氏係數”, 國立成功大學航空太空研究所碩士論文 2008.
[29] 林朝順, “奈米複合材料機械性質之估測”, 國立成功大學航空太空研究所碩士論文 2009.
[30] Lennard-Jones, J. E., “The determination of molecular fields: from the variation of the viscosity of a gas with temperature,”Proceedings of the royal microscopical society, Vol. 106A, pp. 441, 1924.
[31] Cornell, W. D., Cieplak, P., Bayly, C. I., “A second generation force-field for the simulation of proteins, nucleic-acids, and Organic-molecules,” J. Am. Chem. Soc.Vol. 117, pp. 5179-5197, 1995.
[32] Kelly, B. T., The Physics of Graphite, Applied Science Publishers, London, 1981.
[33] Antonio, P., David, M., Mary, C., “Mechanics of deformation of single-and multi-wall carbon nanotubes,”Journal of the mechanics and Physics of solid, , pp.789-821, 2004.
[34] Zhang, X. F., Zhang, X. B., Tendeloo, G V., “Reciprocal space of carbon tubes: A detailed interpretation of the electron diffraction effects,”Ultramicroscopy, Vol. 57, pp.237-249, 1994.
[35] Gere, J. M., Goodno, B. J., Mechanics of Materials, SI Edition 8th Edition, CENGAGE Learning, Boston, 2012.
[36] ANSYS 操作手冊
[37] Zhou, P., Shi, G., “Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model,”CMC, Vol. 22, pp.147-168, 2011.
[38] Takayuki Kitamura,Yoshitaka Umeno, Ryoji Fushino, “Instability criterion of inhomogeneous atomic system, ”Materials Science and Engineering A, Vol. 379, pp.229-233, 2004.
[39] Takayuki Kitamura,Yoshitaka Umeno, Nagatomo Tsuji, “Analytical evaluation of unstable deformation criterion of atomic structure and its application to nanostructure, ”Computational Materials Science, Vol. 29, pp. 499-510, 2004.
[40] Takahiro Shimada, Satoru Okawa, Shinichiro Minami, Takayuki Kitamura, “Simplifified evaluation of mechanical instability in large-scale atomic structures, ”Materials Science and Engineering A, Vol. 513, pp.166-171, 2009.
[41] Hwu, C., Anisotropic Elastic Plates, Springer, New York, 2010.