| 研究生: |
李孟旋 Li, Meng-Xuan |
|---|---|
| 論文名稱: |
台灣西南部河川化學風化作用對於二氧化碳排放的控制機制及通量 Factors Controlling Carbon Emission and Relevant Fluxes by Mineral Weathering in Southwestern Taiwan Rivers |
| 指導教授: |
劉厚均
Liu, Hou-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 河水化學 、化學風化 、硫酸風化 、硫同位素 、二氧化碳 |
| 外文關鍵詞: | River water chemistry, Chemical weathering, Sulfuric acid-mediated weathering, Sulfur isotope, Carbon dioxide |
| 相關次數: | 點閱:132 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學風化為碳循環中的主要作用之一,岩層中的矽酸鹽及碳酸鹽與環境中的碳酸、硫酸反應,將影響大氣中二氧化碳的消耗與釋放。因碳酸由二氧化碳與水結合而形成,因此矽酸鹽與碳酸的風化反應,在地質時間尺度能消耗大氣中的二氧化碳。然而在造山帶環境,如台灣西南部麓山帶,高聳陡峭的地勢與持續的抬升運動使地層不斷出露大量礦物新鮮面,硫化礦物(特別是黃鐵礦)經氧化反應後產生硫酸,能夠驅動風化礦物反應。相較於碳酸,硫酸對於碳酸鹽反應速率更快、風化作用更具優勢,兩者反應產生的陽離子與碳酸氫根在海洋碳酸鈣補償時間尺度以上,沉澱碳酸鈣的過程則會造成二氧化碳釋放。然而硫酸風化的貢獻在現有的評估及二氧化碳通量計算方法中,不論是在空間及時間上皆需更多觀測數據來完備。由於河水溶解離子組成能夠代表岩石風化的溶解物質,故可透過河水化學分析不同風化途徑的貢獻。本研究針對台灣西南部六條主要河川(八掌溪、急水溪、鹽水溪、後堀溪、二仁溪、高屏溪)橫跨乾、濕季七個時間點進行時間序列採樣,以評估不同水文條件下,台灣西南部河川風化作用對於二氧化碳通量的控制及影響。河水樣品由感應耦合電漿光譜儀測得主要離子濃度,進一步計算碳酸及硫酸造成的二氧化碳通量及風化速率。此外,亦透過多接收器感應耦合電漿質譜儀量測硫同位素比值(δ34S),評估自然源或人為源硫酸的貢獻。計算結果顯示台灣西南部的河水溶解物質中碳酸鹽約占近七成、矽酸鹽約占三成;其中,約有四成來自硫酸的作用,且主要為碳酸鹽礦物的風化。濕季流量越大,硫同位素比值越趨近黃鐵礦端元,支持由硫化礦物產生硫酸進而造成風化的推論。此外,河川流量與硫酸風化貢獻比例、風化產生的二氧化碳相當濃度皆呈正相關。最終,由計算結果結合河水流量數據做出的線性回歸模型,能夠以流量數據預測台灣西南部來自風化作用的二氧化碳通量:河川流量4.5 m3/s為一關鍵閾值,在碳酸鈣補償時間尺度以上,河川流量超過該閾值,二氧化碳通量將由淨消耗轉變為淨釋放。
Carbonate weathering mediated by sulfuric acid can release CO2, in contrast to the CO2 consumption associated with the weathering of silicate minerals, as previously discussed. Southwestern (SW) Taiwan is located in an orogenic belt with concentrated periods of rainfall, where the oxidation of sulfide minerals, primarily pyrite, within the rock formations produces sulfuric acid, which then reacts with other minerals.
River water chemistry can be used to determine mineral weathering processes and estimate relevant CO2 fluxes. We conducted seven time-series samplings over one year, from the summer of 2022 to the summer of 2023, across six rivers in SW Taiwan. The concentrations of major ions were measured using ICP-OES to calculate CO2 fluxes from weathering caused by carbonic and sulfuric acids. Additionally, sulfur isotope ratios (δ34S) were analyzed to determine the sources of sulfuric acid, whether natural or anthropogenic.
The proportion of sulfuric acid-mediated weathering and the concentration of CO2 produced by weathering were positively correlated with river discharge. Sulfur isotope observations indicate that during the wet season, the sulfur isotope ratios of the samples approach the pyrite endmember, supporting the inference that sulfide minerals are oxidized to produce sulfuric acid, which then drives the weathering process.
A linear regression model combining calculation results with river discharge data predicts CO2 fluxes in southwestern Taiwan. When river discharge exceeds 4.5 cms, the CO2 flux shifts from net consumption to net release on a timescale beyond the calcium carbonate compensation.
台灣質譜學會(2015)。質譜分析技術原理與應用(廖寶琦主編;初版)。全華圖書。
林啟文(2013)。五萬分之一臺灣地質圖説明書: 旗山。經濟部中央地質调查所。
陳文山(主編)(2016)。臺灣地質概論 : 比例尺四十萬分一臺灣地質圖說明書。(初版)。中華民國地質學會。
A. Menegário, A., Fernanda Giné, M., A. Bendassolli, J., Cláudia S. Bellato, A., & C. O. Trivelin, P. (1998). Sulfur isotope ratio (34S:32S) measurements in plant material by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 13(9), 1065–1067. https://doi.org/10.1039/A801129J
Berner, R. A., Lasaga, A. C., & Garrels, R. M. (1983). Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. 283:7. https://doi.org/10.2475/ajs.283.7.641
Blattmann, T. M., Wang, S.-L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L.-H., Bernasconi, S. M., Plötze, M., & Eglinton, T. I. (2019). Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1), 2945. https://doi.org/10.1038/s41598-019-39272-5
Bufe, A., Hovius, N., Emberson, R., Rugenstein, J. K. C., Galy, A., Hassenruck-Gudipati, H. J., & Chang, J. M. (2021). Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nature Geoscience, 14(4), 211–216. https://doi.org/10.1038/s41561-021-00714-3
Burke, A., Present, T. M., Paris, G., Rae, E. C. M., Sandilands, B. H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W. W., McClelland, J. W., Spencer, R. G. M., Voss, B. M., & Adkins, J. F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters, 496, 168–177. https://doi.org/10.1016/j.epsl.2018.05.022
Calmels, D., Gaillardet, J., Brenot, A., & France-Lanord, C. (2007). Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 35(11), 1003–1006. https://doi.org/10.1130/G24132A.1
Chamberlin, T. C. (1899). An Attempt to Frame a Working Hypothesis of the Cause of Glacial Periods on an Atmospheric Basis. The Journal of Geology, 7(6), 545–584. http://www.jstor.org/stable/30055497
Chen, Y. G., Liu, J. C. L., Shieh, Y. N., & Liu, T. K. (2004). Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan. Journal of Asian Earth Sciences, 24(2), 213–224. https://doi.org/10.1016/j.jseaes.2003.10.004
Chung, C. H., You, C. F., & Chu, H. Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433–443. https://doi.org/10.1016/j.jmarsys.2007.09.013
Chung, C. H., You, C. F., Hsu, S. C., & Liang, M. C. (2019). Sulfur isotope analysis for representative regional background atmospheric aerosols collected at Mt. Lulin, Taiwan. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-56048-z
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28(C), 199–260. https://doi.org/10.1016/0009-2541(80)90047-9
Craddock, P. R., Rouxel, O. J., Ball, L. A., & Bach, W. (2008). Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chemical Geology, 253(3–4), 102–113. https://doi.org/10.1016/j.chemgeo.2008.04.017
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., & Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648–651. https://doi.org/10.1038/nature02150
Das, A., Chung, C. H., & You, C. F. (2012). Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12). https://doi.org/10.1029/2012GL051549
Das, A., Chung, C.-H., You, C.-F., & Shen, M.-L. (2012). Application of an improved ion exchange technique for the measurement of δ34S values from microgram quantities of sulfur by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 27(12), 2088–2093. https://doi.org/10.1039/C2JA30189J
Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P. D. P., Gonfiantini, R., & Krouse, R. (2001). Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65(15), 2433–2437. https://doi.org/https://doi.org/10.1016/S0016-7037(01)00611-1
Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016). Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3), 727–742. https://doi.org/10.5194/esurf-4-727-2016
Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1), 3–30. https://doi.org/https://doi.org/10.1016/S0009-2541(99)00031-5
Galy, A., & France-Lanord, C. (1999). Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159(1), 31–60. https://doi.org/https://doi.org/10.1016/S0009-2541(99)00033-9
Han, X., Guo, Q., Liu, C., Fu, P., Strauss, H., Yang, J., Hu, J., Wei, L., Ren, H., Peters, M., Wei, R., & Tian, L. (2016). Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China. Scientific Reports, 6. https://doi.org/10.1038/srep29958
Hilton, R. G., Gaillardet, J. Ô., Calmels, D., & Birck, J. L. (2014). Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters, 403, 27–36. https://doi.org/10.1016/j.epsl.2014.06.021
Hilton, R. G., Galy, A., Hovius, N., Kao, S. J., Horng, M. J., & Chen, H. (2012). Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Global Biogeochemical Cycles, 26(3). https://doi.org/10.1029/2012GB004314
Hilton, R. G., & West, A. J. (2020). Mountains, erosion and the carbon cycle. In Nature Reviews Earth and Environment (Vol. 1, Issue 6, pp. 284–299). Springer Nature. https://doi.org/10.1038/s43017-020-0058-6
Ho, C. S. (1988). An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan (2nd ed.). Ministry of Economic Affairs, Central Geological Survey.
Hoefs, J. (2015). Stable Isotope Geochemistry. Springer International Publishing. https://doi.org/10.1007/978-3-319-19716-6
Kao, S. J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J. C., Hsu, S. C., Sparkes, R., Liu, J. T., Lee, T. Y., Yang, J. Y. T., Galy, A., Xu, X., & Hovius, N. (2014). Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: Mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2(1), 127–139. https://doi.org/10.5194/esurf-2-127-2014
Kemeny, P. C., Lopez, G. I., Dalleska, N. F., Torres, M., Burke, A., Bhatt, M. P., West, A. J., Hartmann, J., & Adkins, J. F. (2021). Sulfate sulfur isotopes and major ion chemistry reveal that pyrite oxidation counteracts CO2 drawdown from silicate weathering in the Langtang-Trisuli-Narayani River system, Nepal Himalaya. Geochimica et Cosmochimica Acta, 294, 43–69. https://doi.org/10.1016/j.gca.2020.11.009
Kirkby, M. (1971). Hillslope Process-Response Models Based on the Continuity Equation. Inst. Br. Geogr. Spec. Publ., 3.
Krouse, H. R. (1991). Stable isotopes: Natural and anthropogenic sulphur in the environment. John Wiley and Sons. http://inis.iaea.org/search/search.aspx?orig_q=RN:24035184
Lo, F. L., Chen, H. F., & Fang, J. N. (2017). Discussion of suitable chemical weathering proxies in sediments by comparing the dissolution rates of minerals in different rocks. Journal of Geology, 125(1), 83–99. https://doi.org/10.1086/689184
Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428. https://doi.org/10.2475/ajs.287.5.401
Meybeck, M. (2003). Global Occurrence of Major Elements in Rivers. In Treatise on Geochemistry (Vols. 5–9, pp. 207–223). Elsevier Inc. https://doi.org/10.1016/B0-08-043751-6/05164-1
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Zhou, J., Xue, D., Zhao, J., Zhai, G., Gu, J., & Zhai, P. (2001). Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environmental Science and Technology, 35(6), 1064–1071. https://doi.org/10.1021/es001399u
Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate.
Rosman, K. J. R., & Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997 (Technical Report). 70(1), 217–235. https://doi.org/doi:10.1351/pac199870010217
Seal, R. R. (2006). Sulfur isotope geochemistry of sulfide minerals. In Reviews in Mineralogy and Geochemistry (Vol. 61, pp. 633–677). https://doi.org/10.2138/rmg.2006.61.12
Summerhayes, C. P., & Thorpe, S. A. (1996). Oceanography: An Illustrated Guide. CRC Press. https://doi.org/10.1201/9781840765472
Szynkiewicz, A., Witcher, J. C., Modelska, M., Borrok, D. M., & Pratt, L. M. (2011). Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA). Chemical Geology, 283(3–4), 194–209. https://doi.org/10.1016/j.chemgeo.2011.01.017
Torres, M. A., West, A. J., Clark, K. E., Paris, G., Bouchez, J., Ponton, C., Feakins, S. J., Galy, V., & Adkins, J. F. (2016). The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth and Planetary Science Letters, 450, 381–391. https://doi.org/10.1016/j.epsl.2016.06.012
Torres, M. A., West, A. J., & Li, G. (2014). Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492), 346–349. https://doi.org/10.1038/nature13030
Vitòria, L., Otero, N., Soler, A., & Canals, A. (2004). Fertilizer characterization: Isotopic data (N, S, O, C, and Sr). Environmental Science and Technology, 38(12), 3254–3262. https://doi.org/10.1021/es0348187
West, A. J., Galy, A., & Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1–2), 211–228. https://doi.org/10.1016/j.epsl.2005.03.020
White, W. M. (Ed.). (2018). Encyclopedia of Geochemistry. Springer International Publishing. https://doi.org/10.1007/978-3-319-39312-4
Zeebe, R. E., & Westbroek, P. (2003). A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,”and the"Cretan" Ocean. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000538