簡易檢索 / 詳目顯示

研究生: 簡隸
Chien, Li
論文名稱: 使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制
Impedance Control of a Self-adaptive Shoulder Rehabilitation Exoskeleton Using Series Elastic Actuators
指導教授: 藍兆杰
Lan, Chao-Chieh
共同指導教授: 邱顯堂
Chiou, Shen-Tarng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 146
中文關鍵詞: 肩外甲自適復健機器串聯彈性致動器阻抗控制雙軸力感測器設計
外文關鍵詞: Shoulder rehabilitation, upper limb exoskeleton, series elastic actuators, impedance control, multi-axis force sensor.
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對一肩外甲自適復健機器設計阻抗控制器,使其能夠以具高度人機親合性之方式,輔助上肢失能患者進行復健運動。不同於現存之上肢外甲機器大多採用旋轉致動器配合串聯機構的設計,本外甲機器採用線性致動器及並聯機構的設計,利用4R及5R球面機構驅動導引患者上肢進行復健運動。此外,本外甲機器亦結合了被動式外甲之概念,額外設置一勁度可調式靜平衡機構於外甲末端,使得外甲機器能夠因應不同使用者提供對應的平衡扭矩以抵銷重力所造成的負荷。使得外甲機器可選用較小的馬達作為致動器之選擇,在降低外甲造價的同時維持外甲輕巧性。此外,本文採用具較高扭矩密度之線性步進馬達實現串聯彈性致動器,以撓性驅動方式驅動外甲機器,利用線性電位計感測串聯彈性致動器彈簧的變形量即可進行力量回授控制,使得外甲機器不需額外安裝昂貴的力量感測器即可達成人機互動控制功能。
    本文依序針對串聯彈性致動器、4R及5R球面機構與靜平衡機構進行分析,並且設計對應之實驗以驗證串聯彈性致動器與靜平衡機構的性能表現。接著設計馬達驅動與感測電路及控制系統軟硬體架構,使得外甲機器原型能夠結合嵌入式控制器以電腦進行控制。為了進一步對控制系統進行設計,本文針對串聯彈性致動器及外甲機構系統進行建模,並利用商用軟體MATLAB®中的Simulink®建立模擬模型,使得本文能夠同時利用實驗及模擬方法進行外甲性能驗證。接著本文利用最佳化方法設計阻抗控制器使外甲機器能夠實現順向及逆向驅動功能,以輔助患者進行主動及被動式復健訓練。最後本文利用商用軟體ANSYS®中的APDL語言建立有限元素分析模型,並結合最佳化方法設計一能夠獨立感測兩方向受力值的雙軸力量感測器,用以感測在外甲作動過程中人機間的互動作用力。

    Powered exoskeletons can facilitate after-stroke rehabilitation of patients with shoulder disabilities. This thesis presents a new actuated shoulder exoskeleton that consists of two spherical mechanisms, two slider crank mechanisms, an adaptive mechanism, and a gravity balancing mechanism. The actuators are grounded and placed side-by-side. Thus better inertia properties can be achieved while lightweight and compactness are maintained. To achieve high-quality position/force control and more safely interact with human, two linear series elastic actuators (SEAs) that consist of two linear stepper motors with leadscrew transmissions and two internal elastic elements are proposed. The number of force sensors and actuators are minimized by using the adaptive mechanism with only passive joints and SEAs.
    Static and dynamic models of the compliant shoulder exoskeleton are developed to analyze its performance. To achieve the forward and backward drivability of exoskeleton, two cascaded impedance controllers are developed by using optimal design method. Finally, to ensure safe interaction, a compact two-axis force sensor is proposed and realized in the adaptive mechanism to obtain accurate force at the human-exoskeleton interface. Experiments using a prototype demonstrate that the exoskeleton can provide bidirectional actuation between exoskeleton and upper limb, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of automatic shoulder rehabilitation.

    摘要 I Impedance Control of a Self-adaptive Shoulder Rehabilitation Exoskeleton Using Series Elastic Actuators II 致謝 X 目錄 XI 表目錄 XVI 圖目錄 XVIII 符號說明 XXV 第一章 緒論 1 1.1 背景介紹 1 1.1.1 上肢復健機器 1 1.1.2 人機互動 4 1.2 文獻回顧 6 1.2.1 上肢外甲機器研究 6 1.2.2 人機互動作用力回授方法 9 1.2.3 互動控制方法 10 1.3 研究動機與目標 14 1.4 論文架構 15 第二章 外甲機構與驅動 17 2.1 前言 17 2.2 串聯彈性致動器 17 2.2.1 串聯彈性致動實現方式 17 2.2.2 馬達選用與軟硬體配置 18 2.2.3 馬達驅動公式推導 20 2.2.4 馬達驅動電路與參數鑑別 23 2.2.5 馬達摩擦力模型 26 2.2.6 電位計量測電路與校正 28 2.2.7 彈簧勁度設計與校正 31 2.2.8 力量控制實驗 32 2.3 外甲機構 35 2.3.1 運動分析 36 2.3.2 力量分析 40 2.3.3 旋轉接頭實現方式 42 2.4 靜平衡機構 43 2.4.1 靜平衡彈簧勁度設計 44 2.4.2 靜平衡彈簧勁度校正實驗 45 2.4.3 扭矩分析 47 2.4.4 預載量最佳化 49 2.4.5 輸出扭矩實驗 50 2.5 本章小結 51 第三章 雙軸阻抗控制器最佳化設計 52 3.1 前言 52 3.2 串聯彈性致動器模型 52 3.2.1 時域模型 53 3.2.2 s域模型 55 3.3 阻抗控制器 57 3.3.1 串集式阻抗控制器 57 3.3.2 串聯彈性致動阻抗控制轉移函數 58 3.4 模擬模型建立與簡化 60 3.4.1 末端負載等效質量 60 3.4.2 自適機構末端負載等效質量 64 3.4.3 模擬模型建立 67 3.4.4 馬達飽和現象 70 3.4.5 馬達動態特性 72 3.5 阻抗控制器最佳化設計 73 3.5.1 穩定性分析 73 3.5.2 控制器最佳化設計流程 75 3.5.3 順向驅動控制器最佳化設計 76 3.5.4 逆向驅動控制器最佳化設計 81 3.6 本章小結 85 第四章 雙軸阻抗控制性能分析與實驗驗證 86 4.1 前言 86 4.2 順向驅動位置追蹤 86 4.2.1 機械系統共振頻率 87 4.2.2 控制系統共振頻率 91 4.2.3 順向驅動頻寬分析 92 4.2.4 阻抗值對順向驅動性能影響分析 93 4.2.5 彈簧勁度對順向驅動性能影響分析 95 4.2.6 展縮順向驅動實驗驗證 97 4.2.7 旋轉順向驅動實驗驗證 100 4.2.8 自適機構順應性實驗驗證 102 4.3 虛擬阻抗追蹤 104 4.3.1 虛擬阻抗頻率響應 105 4.3.2 虛擬阻抗自然振動時域響應 107 4.3.3 彈簧勁度對虛擬阻抗追蹤性能影響分析 110 4.3.4 虛擬阻抗追蹤實驗驗證 112 4.4 逆向驅動性能分析 114 4.4.1 逆向驅動時域響應 115 4.4.2 彈簧勁度對逆向驅動性能影響分析 116 4.4.3 逆向驅動實驗驗證 117 4.5 本章小結 119 第五章 雙軸力量感測器最佳化設計 120 5.1 前言 120 5.2 設計概念 120 5.2.1 構形設計 121 5.2.2 感測器材料與應變規選用 122 5.2.3 應變量測電路 122 5.3 力感測器最佳化設計 124 5.3.1 設計參數定義 124 5.3.2 力感測器最佳化設計流程 125 5.3.3 有限元素模型建立 126 5.3.4 尺寸最佳化設計 127 5.4 原型實作與實驗驗證 130 5.4.1 原型加工與實作 130 5.4.2 受力感測實驗與校正 131 5.5 本章小結 134 第六章 結論與未來工作 135 6.1 結論 135 6.2 未來工作 137 參考文獻 139 著作權 146

    [1] Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., & Fox, C. S. (2012). Heart disease and stroke statistics—2012 update a report from the American heart association. Circulation, 125(1), e2-e220.
    [2] Kisner, C., & Colby, L. A. (2012). Therapeutic exercise: foundations and techniques. Fa Davis.
    [3] Sicuri, C., Porcellini, G., & Merolla, G. (2014). Robotics in shoulder rehabilitation. Muscles, ligaments and tendons journal, 4(2), 207.
    [4] Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Medical engineering & physics, 34(3), 261-268.
    [5] Chen, S.-H., Lien, W.-M., Wang, W.-W., Lee, G.-D., Hsu, L.-C., Lee, K.-W., Lin, S.-Y., Lin, C.-H., Fu, L.-C., & Lai, J.-S. (2016). Assistive control system for upper limb rehabilitation robot. IEEE Transactions on neural systems and rehabilitation engineering, PP(99), 1-1.
    [6] Kung, P.-C., Lin, C.-C. K., Chen, S.-M., & Ju, M.-S. (2016). Control of forearm module in upper-limb rehabilitation robot for reduction and biomechanical assessment of pronator hypertonia of stroke patients. Journal of mechanics in medicine and biology, 16(02), 1650008.
    [7] 謝祥謙 (2015)。可穿戴式上肢外骨骼機構之最佳化設計。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [8] Brunnström, S. (1970). Movement therapy in hemiplegia: a neurophysiological approach. Medical Dept., Harper & Row.
    [9] Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of neuroengineering and rehabilitation, 11(1), 1.
    [10] Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings., 1995 IEEE/RSJ International Conference on (Vol. 1, pp. 399-406). IEEE.
    [11] Pratt, G. A., Williamson, M. M., Dillworth, P., Pratt, J., & Wright, A. (1997). Stiffness isn't everything. In Experimental Robotics IV (pp. 253-262). Springer Berlin Heidelberg.
    [12] 李昱鋒 (2015)。使用串聯彈性驅動於仿人機器手腕之二維扭矩與阻抗控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [13] Kinetec®. Centura Lite [Online product catalog]. Retrieved from http://kinetec.fr/en/kinetec-selection/cpm-continuous-passive-motion/shoulder/centura-lite.html
    [14] Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied bionics and biomechanics, 6(2), 127-142.
    [15] Keller, U., & Riener, R. (2014). Design of the pediatric arm rehabilitation robot ChARMin. In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 530-535). IEEE.
    [16] Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., & Kooij, H. (2015). LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME transactions on mechatronics, 20(5), 2285-2298.
    [17] Carignan, C., Liszka, M., & Roderick, S. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In ICAR'05. Proceedings., 12th International Conference on Advanced Robotics, 2005. (pp. 524-531). IEEE.
    [18] Gopura, R. A. R. C., Kiguchi, K., & Li, Y. (2009). SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1126-1131). IEEE.
    [19] Klein, J., Spencer, S., Allington, J., Bobrow, J. E., & Reinkensmeyer, D. J. (2010). Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Transactions on robotics, 26(4), 710-715.
    [20] Perry, J. C., & Rosen, J. (2006). Design of a 7 degree-of-freedom upper-limb powered exoskeleton. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. (pp. 805-810). IEEE.
    [21] Ball, S. J., Brown, I. E., & Scott, S. H. (2007). MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 1-6). IEEE.
    [22] Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on robotics, 28(4), 922-931.
    [23] Rosati, G., Gallina, P., Masiero, S., & Rossi, A. (2005). Design of a new 5 dof wire-based robot for rehabilitation. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. (pp. 430-433). IEEE.
    [24] Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., & Feys, P. (2011). The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Journal of neuroengineering and rehabilitation, 8(1), 1.
    [25] Rahman, T., Sample, W., Jayakumar, S., King, M. M., Wee, J. Y., Seliktar, R., Alexander, M., Scavina, M., & Clark, A. (2006). Passive exoskeletons for assisting limb movement. Journal of rehabilitation research and development, 43(5), 583.
    [26] Gunasekara, J., Gopura, R., Jayawardane, T., & Lalitharathne, S. (2012). Control methodologies for upper limb exoskeleton robots. In System Integration (SII), 2012 IEEE/SICE International Symposium on (pp. 19-24). IEEE.
    [27] dos Santos, W. M., Caurin, G. A., & Siqueira, A. A. (2015). Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator. Control engineering practice.
    [28] Moubarak, S., Pham, M. T., Pajdla, T., & Redarce, T. (2009). Design and modeling of an upper extremity exoskeleton. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (pp. 476-479). Springer Berlin Heidelberg.
    [29] Huang, J., Huo, W., Xu, W., Mohammed, S., & Amirat, Y. (2015). Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Transactions on automation science and engineering, 12(4), 1257-1270.
    [30] Lenzi, T., De Rossi, S., Vitiello, N., & Carrozza, M. (2011). Proportional EMG control for upper-limb powered exoskeletons. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 628-631). IEEE.
    [31] Villani, L., & De Schutter, J. (2008). Force control. In Springer handbook of robotics (pp. 161-185). Springer Berlin Heidelberg.
    [32] Altschuler, E. L., Wisdom, S. B., Stone, L., Foster, C., Galasko, D., Llewellyn, D. M. E., & Ramachandran, V. S. (1999). Rehabilitation of hemiparesis after stroke with a mirror. The lancet, 353(9169), 2035-2036.
    [33] Yavuzer, G., Selles, R., Sezer, N., Sütbeyaz, S., Bussmann, J. B., Köseoğlu, F., Atay, M. B., & Stam, H. J. (2008). Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 89(3), 393-398.
    [34] Agarwal, P., & Deshpande, A. D. (2015). Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 85-90). IEEE.
    [35] Miller, L. M., & Rosen, J. (2010). Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. In Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on (pp. 70-75). IEEE.
    [36] Raibert, M. H., & Craig, J. J. (1981). Hybrid position/force control of manipulators. Journal of dynamic systems, measurement, and control, 103(2), 126-133.
    [37] Ju, M.-S., Lin, C.-C. K., Lin, D.-H., Hwang, I.-S., & Chen, S.-M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on neural systems and rehabilitation engineering, 13(3), 349-358.
    [38] Mehling, J. S. (2015). Impedance Control Approaches for Series Elastic Actuators (Doctoral dissertation, Rice University). Retrieved from http://hdl.handle.net/1911/88206
    [39] Lawrence, D. A. (1988). Impedance control stability properties in common implementations. In Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference on (pp. 1185-1190). IEEE.
    [40] Heinrichs, B., Sepehri, N., & Thornton-Trump, A. (1997). Position-based impedance control of an industrial hydraulic manipulator. IEEE Control systems, 17(1), 46-52.
    [41] Ott, C., Albu-Schaffer, A., Kugi, A., & Hirzinger, G. (2008). On the passivity-based impedance control of flexible joint robots. IEEE Transactions on robotics, 24(2), 416-429.
    [42] Murakami, T., Nakamura, R., Yu, F., & Ohnishi, K. (1993). Force sensorless impedance control by disturbance observer. In Power Conversion Conference, 1993. Yokohama 1993., Conference Record of the (pp. 352-357). IEEE.
    [43] Yun, J. N., Su, J., Kim, Y. I., & Kim, Y. C. (2013). Robust disturbance observer for two-inertia system. IEEE Transactions on industrial electronics, 60(7), 2700-2710.
    [44] Chen, C.-J., Cheng, M.-Y., & Su, K.-H. (2013). Observer-based impedance control and passive velocity control of power assisting devices for exercise and rehabilitation. In Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (pp. 6502-6507). IEEE.
    [45] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: a safe robot for reconstructive surgery. IEEE Transactions on robotics and automation, 19(5), 876-884.
    [46] Haydon Kerk Motion Solutions, Inc (2011). Hybrid Linear Actuators [Online product catalog]. Retrieved from http://www.haydonkerk.com/Home/tabid/324/Default.aspx
    [47] 徐嘉佑 (2013)。具兩共置撓性驅動軸機器手腕之動力與控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [48] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993). High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on control systems technology, 1(1), 5-14.
    [49] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order sliding mode control laws for stepper motors. Control engineering practice, 16(4), 429-443.
    [50] Shams, M., Zarei-nejad, M., & Safdari, M. (2008). Fuzzy sliding mode control of a ball screw driven stage. In Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on (pp. 369-374). IEEE.
    [51] Karnopp, D. (1985). Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of dynamic systems, measurement, and control, 107(1), 100-103.
    [52] Chandler, R., Clauser, C. E., McConville, J. T., Reynolds, H., & Young, J. W. (1975). Investigation of inertial properties of the human body (No. AMRL-TR-74-137). Air force aerospace medical research lab Wright-Patterson air force base, Ohio.
    [53] 陳典賦 (2016)。並聯驅動肩外甲自適復健機器之設計。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [54] Jarrassé, N., & Morel, G. (2012). Connecting a human limb to an exoskeleton. IEEE Transactions on robotics, 28(3), 697-709.
    [55] Chui, B., Kenny, T., Mamin, H., Terris, B., & Rugar, D. (1998). Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever. Applied physics letters, 72(11), 1388-1390.
    [56] National Instruments (2011). Connecting a Strain Gage in a Quarter-Bridge Configuration to NI 9237 Using NI 9949 [Online forum comment]. Retrieved from http://digital.ni.com/public.nsf/allkb/ED161F9867C820998625796D00769DBC
    [57] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of permanent magnet stepper motors without mechanical sensors. Control engineering practice, 26, 178-187.
    [58] Peer, A. (2008). Design and control of admittance-type telemanipulation systems. VDI-Verlag.

    無法下載圖示 校內:2021-10-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE