| 研究生: |
劉晏甄 Liu, Yen-Chen |
|---|---|
| 論文名稱: |
以眼動訊號為基礎的自動睡眠感測與喚醒系統 Development of an EOG-based Automatic Sleep Monitoring and Wake-up System |
| 指導教授: |
梁勝富
liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 自動睡眠判讀 、居家睡眠監控裝置 、眼動圖 、午睡 |
| 外文關鍵詞: | Automatic sleep scoring, Home-based sleep monitoring device, EOG, napping |
| 相關次數: | 點閱:124 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠在人的一天中約佔據三分之一的時間,然而並非所有人都能擁有良好的睡眠品質,許多人被睡眠問題以及睡眠疾病所困擾。目前臨床睡眠診斷上使用PSG所收錄的腦電訊號、眼動訊號以及肌電訊號作為專家判讀睡眠階段的依據,其中又以腦電訊號最為重要。雖然PSG可記錄多重的生理訊號,但是大量的電極線對使用者也造成睡眠干擾與無法獨立使用等問題。再者,PSG訊號須經由專家判讀,需耗費許多人力以及時間。相較於腦電訊號,眼動訊號(EOG)只需在眼部周圍黏貼電極,並且也能擷取到部分睡眠時的腦電訊號訊號的特徵,透過專門分析技術,就能同時兼顧使用的便利性與睡眠階段判讀,因此我們開發了一套以眼動訊號為基礎的可攜式自動睡眠感測系統。我們收錄了16位健康的成年人的整夜訊號來訓練系統參數與測試系統效能,使用其中八筆進行參數訓練而另外八筆進行測試。我們結合多尺度熵以及自回歸模型開發以眼動訊號為基礎的睡眠階段分析技術。本系統的判讀結果與專家判讀結果的一致性高達84.33%,此效能已達到目前臨床判讀的標準。此外,根據我們先前的研究,最適當的午睡時間長度為睡至淺睡第二期後的10分鐘。然而目前的鬧鐘並無法感測使用者的睡眠階段,而PSG在使用上極不方便也無法自行使用,因此我們利用開發出的自動睡眠判讀系統延伸出根據睡眠階段喚醒使用者的應用。我們收錄了10位健康的成年人午睡訊號來測試即時分析與喚醒系統的效能。睡眠階段的即時分析部份,本系統的準確性為83.08%;而在喚醒時間差異的部份,我們的系統與專家判讀的時間只有0.65分鐘的差異(標準差 0.78分鐘)。證實我們的喚醒系統確實可以在適當的睡眠階段喚醒使用者。未來可將系統與控制睡眠環境的功能做結合,讓使用者擁有更舒適健康的睡眠品質。
Human beings spend approximately one third of their lives sleep including nap and overnight sleep. However, sleep diseases seriously affect patients’ quality of life. For diagnosis, polysomnographic (PSG) recordings including electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) are most commonly taken for sleep stage scoring. Although PSG can record multi-channel signals, the large amount of wires also cause many problems such as sleep interference and it’s not self-applicable. Moreover, PSG signals are visually scored by the well-trained expert which is a time-consuming and subjective process. Compared to PSG, the electrodes of EOG recording is placed around the eyes, and the EOG signals are also coupling some of sleep characteristics of EEG signals. Therefore, we developed an EOG-based automatic stage scoring system to integrate with the eye-mask for sleep monitoring. All-night sleep recordings were obtained from 16 healthy adults, half of the data were used for system training and the others were for testing. The overall agreement between the computer scoring and the manual scoring can reach 84.33%, the result is also in the inter-score agreement. According to our previous studies, human have 10 minutes of S2 nap can achieve better working and memory performance compared to a fixed-length short-term sleep. But the conventional alarm clock cannot sense user’s sleep stage and PSG is not self-applicable and inconvenient. Therefore, we extended our system to be a smart wake-up device. 10 subjects were involved in our experiment to test the performance of our smart wake-up devices. The overall agreement of sleep scoring reaches 83.08%, and the difference of wake-up time between our system and manual scoring is only 0.65 minutes (S.D. 0.78 minutes). The result demonstrates that our system can wake up user in the proper way. In the future, our system can also be applied for sleep environment control to make the user has a healthier and more comfortable sleep quality.
Agarwal, Rajeev, & Gotman, Jean. (2001). Computer-assisted sleep staging. Biomedical Engineering, IEEE Transactions on, 48(12), 1412-1423.
Altman, Duglas G. (1991). Practical statistics for medical research (Vol. 12): Chapman & Hall/CRC.
Ancoli-Israel, S, Cole, R, Alessi, C, Chambers, M, Moorcroft, W, & Pollak, C. (2003). The role of actigraphy in the study of sleep and circadian rhythms. American Academy of Sleep Medicine Review Paper. Sleep, 26(3), 342-392.
Backhaus, Jutta, & Junghanns, Klaus. (2006). Daytime naps improve procedural motor memory. Sleep Medicine, 7(6), 508.
Berthomier, Christian, Drouot, Xavier, Herman-Stoïca, Maria, Berthomier, Pierre, Prado, Jacques, Bokar-Thire, Djibril, et al. (2007). Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep, 30(11), 1587.
Bonnet, Michael H. (1983). Memory for events occurring during arousal from sleep. Psychophysiology, 20(1), 81-87.
Burioka, Naoto, Miyata, Masanori, Cornélissen, Germaine, Halberg, Franz, Takeshima, Takao, Kaplan, Daniel T, et al. (2005). Approximate entropy in the electroencephalogram during wake and sleep. Clinical EEG and neuroscience, 36(1), 21-24.
Chen, Chun-Yu. (2012). Effects of Daytime Naps on Sleepiness Reduction and Performance Enhancement. Unpublished master's thesis.
. National Chen Kung University, Tainan City.
Chialvo, Dante R. (2002). Physiology: unhealthy surprises. Nature, 419(6904), 263-263.
Chin-Teng, Lin, Ken-Li, Lin, Li-Wei, Ko, Sheng-Fu, Liang, & Bor-Chen, Kuo. (2008). Nonparametric single-trial EEG feature extraction and classification of driver's cognitive responses. EURASIP Journal on Advances in Signal Processing, 2008.
Cohen, Jacob. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1), 37-46.
Costa, Madalena, Goldberger, Ary L, & Peng, C-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2), 021906.
Costa, Madalena, Peng, C-K, L Goldberger, Ary, & Hausdorff, Jeffrey M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A: Statistical Mechanics and its Applications, 330(1), 53-60.
Dhand, Rajiv, & Sohal, Harjyot. (2006). Good sleep, bad sleep! The role of daytime naps in healthy adults. Current opinion in pulmonary medicine, 12(6), 379-382.
Diekelmann, Susanne, & Born, Jan. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126.
Fejtova, M, & Fejt, J. (2006). Eye as a new computer periphery. Lékař a technika, 36(1), 45-50.
Feltin, Marie, & Broughton, Roger. (1968). Differential effects of arousal from slow wave versus REM sleep. Psychophysiology.
Flexer, Arthur, Gruber, Georg, & Dorffner, Georg. (2005). A reliable probabilistic sleep stager based on a single EEG signal. Artificial intelligence in Medicine, 33(3), 199-207.
Iber, Conrad. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications: American Academy of Sleep Medicine.
Kang, Xiaoxu, Jia, Xiaofeng, Geocadin, Romergryko G, Thakor, Nitish V, & Maybhate, Anil. (2009). Multiscale entropy analysis of EEG for assessment of post-cardiac arrest neurological recovery under hypothermia in rats. Biomedical Engineering, IEEE Transactions on, 56(4), 1023-1031.
Kelly, Jessica M, Strecker, Robert E, & Bianchi, Matt T. (2012). Recent Developments in Home Sleep-Monitoring Devices. ISRN neurology, 2012.
Kortelainen, Juha M, Mendez, Martin O, Bianchi, Anna Maria, Matteucci, Matteo, & Cerutti, Sergio. (2010). Sleep staging based on signals acquired through bed sensor. Information Technology in Biomedicine, IEEE Transactions on, 14(3), 776-785.
KRIPKE, DANIEL F, HAHN, ELIZABETH K, GRIZAS, ALEXANDRA P, WADIAK, KEP H, LOVING, RICHARD T, POCETA, J STEVEN, et al. (2010). Wrist actigraphic scoring for sleep laboratory patients: algorithm development. Journal of sleep research, 19(4), 612-619.
Kuo, Bor-Chen, & Landgrebe, David A. (2004). Nonparametric weighted feature extraction for classification. Geoscience and Remote Sensing, IEEE Transactions on, 42(5), 1096-1105.
Kuo, Chin-En, Hsieh, Tsung-Hao, & Liang, Sheng-Fu. (2012). The Automatic Sleep Scoring Method Based on Multiscale Entropy Analysis of EOG Signals.
Kuwahara, H, Higashi, H, Mizuki, Y, Matsunari, S, Tanaka, M, & Inanaga, K. (1988). Automatic real-time analysis of human sleep stages by an interval histogram method. Electroencephalography and clinical neurophysiology, 70(3), 220-229.
Landis, J Richard, & Koch, Gary G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.
Liang, Sheng-Fu, Kuo, Chin-En, Hu, Yu-Han, & Cheng, Yu-Shian. (2012a). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1), 169-176.
Liang, Sheng-Fu, Kuo, Chin-En, Hu, Yu-Han, Pan, Yu-Hsiang, & Wang, Yung-Hung. (2012b). Automatic Stage Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and Autoregressive Models. Instrumentation and Measurement, IEEE Transactions on, 61(6), 1649-1657.
Mahowald, Mark W, & Schenck, Carlos H. (2005). Insights from studying human sleep disorders. Nature, 437(7063), 1279-1285.
Marshall, Lisa, & Born, Jan. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in cognitive sciences, 11(10), 442-450.
Migliorini, Matteo, Bianchi, Anna M, Nisticò, Domenico, Kortelainen, J, Arce-Santana, E, Cerutti, S, et al. (2010). Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE.
Milner, Catherine E, & Cote, Kimberly A. (2009). Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. Journal of Sleep Research, 18(2), 272-281.
Milner, Catherine E, Fogel, Stuart M, & Cote, Kimberly A. (2006). Habitual napping moderates motor performance improvements following a short daytime nap. Biological psychology, 73(2), 141-156.
Nishida, Masaki, & Walker, Matthew P. (2007). Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One, 2(4), e341.
Norris, Patrick R, Anderson, Steven M, Jenkins, Judith M, Williams, Anna E, & Morris Jr, John A. (2008). Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-22.
Ohayon, Maurice M. (2002). Epidemiology of insomnia: what we know and what we still need to learn. Sleep medicine reviews, 6(2), 97-111.
Olbrich, E, Achermann, P, & Meier, PF. (2003). Dynamics of human sleep EEG. Neurocomputing, 52, 857-862.
Pardey, James, Roberts, Stephen, & Tarassenko, Lionel. (1996). A review of parametric modelling techniques for EEG analysis. Medical engineering & physics, 18(1), 2-11.
Park, Haejeong, Park, KwangSuk, & Jeong, Do-Un. (2000). Hybrid neural-network and rule-based expert system for automatic sleep stage scoring. Paper presented at the Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE.
PARK, JEONG-HYEON, KIM, SOOYONG, KIM, CHEOL-HYUN, CICHOCKI, ANDRZEJ, & KIM, KYUNGSIK. (2007). Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals, 15(04), 399-404.
Pincus, Steve. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110-117.
Pincus, Steven M. (1991). Approximate entropy: a complexity measure for biological time series data. Paper presented at the Bioengineering Conference, 1991., Proceedings of the 1991 IEEE Seventeenth Annual Northeast.
Plihal, Werner, & Born, Jan. (1999). Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology, 36(5), 571-582.
Rechtschaffen, Allan, & Kales, Anthony. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects.
Richman, Joshua S, & Moorman, J Randall. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
Sadeh, Avi. (2011). The role and validity of actigraphy in sleep medicine: an update. Sleep medicine reviews, 15(4), 259-267.
Sadeh, Avi, & Acebo, Christine. (2002). The role of actigraphy in sleep medicine. Sleep medicine reviews, 6(2), 113-124.
Sadeh, Avi, Hauri, Peter J, Kripke, Daniel F, & Lavie, Peretz. (1995). The role of actigraphy in the evaluation of sleep disorders. Sleep, 18(4), 288-302.
Sadeh, Avi, Sharkey, Katherine M, & Carskadon, Mary A. (1994). Activity-Based Sleep—Wake Identification: An Empirical Test of Methodological Issues. Sleep, 17(3), 201-207.
Schaltenbrand, Nicolas, Lengelle, Régis, Toussaint, M, Luthringer, R, Carelli, G, Jacqmin, A, et al. (1996). Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep, 19(1), 26.
Shambroom, John R, Fábregas, Stephan E, & Johnstone, Jack. (2012). Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21(2), 221-230.
Smith, Jack R, & Karacan, Ismet. (1971). EEG sleep stage scoring by an automatic hybrid system. Electroencephalography and clinical neurophysiology, 31(3), 231-237.
Stickgold, Robert, & Walker, Matthew P. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep medicine, 8(4), 331-343.
Stones, MJ. (1977). Memory performance after arousal from different sleep stages. British Journal of Psychology, 68(2), 177-181.
Takahashi, Masaya. (2003). The role of prescribed napping in sleep medicine. Sleep Medicine Reviews, 7(3), 227-236.
Takahashi, Tetsuya, Cho, Raymond Y, Murata, Tetsuhito, Mizuno, Tomoyuki, Kikuchi, Mitsuru, Mizukami, Kimiko, et al. (2009). Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis. Clinical Neurophysiology, 120(3), 476-483.
Tassi, Patricia, & Muzet, Alain. (2000). Sleep inertia. Sleep Medicine Reviews, 4(4), 341-353.
Thakor, Nitish V, & Tong, Shanbao. (2004). Advances in quantitative electroencephalogram analysis methods. Annu. Rev. Biomed. Eng., 6, 453-495.
Tilmanne, Joelle, Urbain, Jerome, Kothare, Mayuresh V, Wouwer, Alain Vande, & Kothare, Sanjeev V. (2009). Algorithms for sleep–wake identification using actigraphy: a comparative study and new results. Journal of sleep research, 18(1), 85-98.
Tucker, Matthew A, Hirota, Yasutaka, Wamsley, Erin J, Lau, Hiuyan, Chaklader, Annie, & Fishbein, William. (2006). A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiology of learning and memory, 86(2), 241-247.
Virkkala, Jussi, Hasan, Joel, Värri, Alpo, Himanen, Sari-Leena, & Müller, Kiti. (2007). Automatic sleep stage classification using two-channel electro-oculography. Journal of neuroscience methods, 166(1), 109-115.
Walker, Matthew P, & Stickgold, Robert. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121-133.
Webb, Wilse B, & Agnew, Harman. (1964). Reaction time and serial response efficiency on arousal from sleep. Perceptual and motor skills, 18(3), 783-784.
Wilkinson, Robert T, & Stretton, M. (1970). Performance after awakening at different times of night: DTIC Document.