| 研究生: |
湯懋泉 Tang, Mao-chyuan |
|---|---|
| 論文名稱: |
高頻自動量測系統之建立及其應用在深次微米元件高頻特性之研究 Investigations on The RF Performances of Deep Submicron CMOS Devices with a Developed Automatic Test System |
| 指導教授: |
葉文冠
Yeh, Wen-kuan 方炎坤 Fang, Yean-kuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 傳輸線 、電感 、互補式金氧半電晶體 、自動量測系統 、可靠性 、矽鍺源汲極正金氧半電晶體 |
| 外文關鍵詞: | Reliability, SiGe Source/Drain PMOSFET, CMOSFET, Transmission lines, Inductors, Automatic test system |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們將傳統手動之高頻量測機台更新為一套全自動化之高頻量測系統。與市面上之全自動化高頻量測系統相比,它有成本低、省時、但精確性卻無差異之優點。除此之外,我們也發表一些可佈局在切割道上之新型銲墊構造,而它們具有節省面積、並可同時監視晶粒內之元件特性之優點。有了此套全自動化之高頻量測系統及新型銲墊構造,許多矽基主動及被動高頻元件,包括高頻互補式金氧半電晶體、電感及傳輸線等,在本論文中有詳細之研究。
首先,我們在第二章先簡單說明高頻量測,包括散射矩陣、校準、及去嵌化。接著,我們再說明一般常見之手動高頻量測機台,包含康思德科技之12吋探針量測儀S-300、安捷倫科技之向量網路分析儀E8363B PNA、半導體參數分析儀4156C、以及控制軟體ICCAP等所組成。本章亦說明如何將此手動高頻量測機台昇級為全自動量測系統。除外,銲墊構造對於高頻量測之影響在本章也有所討論。
在第三章,我們先介紹一種在後段製程常見之問題,也就是線寬增大效應。然後,我們利用發展出來之全自動化高頻量測系統來探討電感及傳輸線之特性。在電感方面,我們偏重在尺寸、直流偏壓及溫度等效應對其之影響。對傳輸線而言,我們在其本身及其下面之防護層之尺寸對其之影響有深入之討論。
在第四章,我們亦利用此全自動化高頻量測系統來研究熱載子對45及55奈米之負金氧半電晶體直流及高頻參數之影響。我們發現,當元件縮至深次微米區時,閘汲極電容之減少-∆Cgd會比閘源極電容之增加+∆Cgs來得小,而此造成切入頻率fT不僅受互導gm影響,也與Cgs 及 Cgd有關。我們並發展了一套表面通道電阻模型來解釋此一現象。接下來,我們也討論熱載子對不同氧化層厚度之45奈米正金氧半電晶體直流及高頻參數之影響。當然,具有較薄氧化層厚度者會遭受較嚴重之熱載子效應。但不論何者,其切入頻率fT僅受互導gm影響,而與Cgs 及 Cgd無關。
另外,在第四章,我們第一次比較熱載子及FN穿隧加壓對有無矽鍺源汲極之40奈米之正金氧半電晶體之影響。形變正金氧半電晶體會比非形變元件有較差之熱載子及FN穿隧可靠性。但對兩者而言,熱載子加壓後之+Cgs -Cgd,及FN穿隧加壓後之Cgs Cgd 0,都造成切入頻率fT僅受互導gm影響,而與Cgs 及 Cgd無關。
In this dissertation, an automatic RF test system, updated from a manual RF bench tester, has been developed with the advantages of accuracy and time saving. Compared with the commercially automatic RF test systems, the developed system has lower cost with the same performances. In addition, we developed some novel pad structures. These novel pad structures can be laid on the scribe line with the same performances and the advantages of area-saving and effective monitoring of devices in chips. With the automatic RF test system and novel pad structures, many silicon-based active and passive RF devices, including RF CMOS, inductors and transmission lines were investigated.
We firstly illustrate the basic concept about the RF measurements, including the scattering matrix, calibrations and de-embeddings in chapter 2. We then introduce the common RF bench tester comprising of a Cascade S-300 12-inch probe station, Agilent E8363B PNA, Agilent 4156C dc source, and the control program ICCAP. How to update this RF bench tester to the automatic RF test system is described in this chapter. In addition, the effects of pad structures on RF measurements are discussed in this chapter.
Then, a common issue on the BEOL process, i.e., the wire-edge enlargement effect (WEE), which is very serious on the lower metal layer of the deep submicron technology, is introduced. Next, we investigate the RF performances of the inductors and the transmission lines using the developed automatic RF test system. For inductors, the effects of dimension, dc bias and temperature are emphasized with a simple proposed model in detail. For transmission lines, their dimensions and the under shielding lines are also studied with a proposed model in detail.
Moreover, the hot carrier effects on dc and RF parameters of 45-nm and 55-nm NMOSFETs are investigated and compared in detail by the developed automatic RF test system. We find, as devices scale down to the deep submicron region, after hot carrier stress, -∆Cgd is less than +∆Cgs, and results in the fT being dependent on gm, Cgs and Cgd. These new observations are explained comprehensively by the developed surface channel resistance model. Next, the effects of hot carriers on the dc and RF performances of PMOSFETs with various oxide thicknesses prepared by 45 nm CMOS technology were investigated by automatic RF measurements. The devices with a thinner oxide layer suffer more serious damage from hot carriers than those with a thicker oxide layer. The greatest degradation due to hot-carrier injection is shifted from the condition of Vgstr = Vdstr / 2 for peak Ig and Isub in long-channel devices to Vgstr = Vdstr in short-channel devices. The fT degradation is only dependent on the transconductance gm, regardless of the total gate capacitance Cgg (=Cgs+Cgd). Furthermore, both hot carrier and Fowler-Nordheim (FN) tunneling stresses on RF performances of 40-nm PMOSFETs with and without SiGe S/D are compared for the first time. The strained PMOSFET suffers higher degradations in both hot carrier and FN tunneling reliabilities than those of the non-strained device. For both structures, the degradations caused by HCS are more serious than that caused by FN tunneling stress. The results of +Cgs -Cgd after HCS and Cgs Cgd 0 after the FN tunneling stress imply that the degradation of fT depends only on that of gm regardless of the changes of Cgs and Cgd for both PMOSFETs with and without SiGe S/D.
[1]. M. J. Deen, and T. A. Fjeldly, “CMOS RF modeling, characterization and applications”, World Scientific, Singapore, 2002.
[2]. M. Golio, “The RF and microwave handbook”, CRC Press, Boca Raton, Florida, 2001.
[3]. M. Golio, “Microwave and RF product applications”, CRC Press, Boca Raton, Florida, 2003.
[4]. G. Gonzalez, “Microwave transistor amplifiers analysis and design, 2nd ed.”, Prentice Hall, Upper Saddle River, N.J., 1997.
[5]. D. M. Pozar, “Microwave engineering, 3rd ed.”, John Wiley & Sons, Hoboken, N.J., 2005.
[6]. S. M. Sze, “Semiconductor devices, physics and technology, 2nd ed.”, Wiley, New York, 2002.
[7]. S. M. Sze, “High-speed semiconductor devices”, Wiley, New York, 1990.
[8]. J. F. White, “High frequency techniques: an introduction to RF and microwave engineering”, IEEE Press, Wiley-Interscience, Hoboken, N.J., 2004.
[9]. R. J. Weber, “Introduction to microwave circuits: radio frequency and design applications”, IEEE, New York, 2001.
[10]. M. M. Radmanesh, “RF & microwave design essentials: engineering design and analysis from DC to microwaves”, Authorhouse, Bloomington, Ind., 2007.
[11]. B. Razavi, “RF microelectronics”, Prentice Hall, Upper Saddle River, N.J., 1998.
[12]. A. K. Goel, “High-speed VLSI interconnections”, IEEE Press, Wiley- Interscience, Hoboken, N.J., 2007.
[13]. C. Nelson, “High-frequency and microwave circuit design”, CRC Press, Boca Raton, Florida, 2008.
[14]. Application Note 1287-1~1287-9, Agilent Technologies.
[15]. User Guide of Agilent PNA E8363B, Agilent Technologies.
[16]. M. C. Tang, Y. K. Fang, W. S. Liao, D. C. Chen, C. S. Yeh, and S. C. Chien, “Investigation and modeling of hot carrier effects on performance of 45-nm and 55-nm NMOSFETs with RF automatic measurement”, IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1541-1546, Jun. 2008.
[17]. J. Cha, J. Cha, and S. Lee, “Uncertainty analysis of two-step and three-step methods for deembedding on-wafer RF transistor measurements”, IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2195-2201, Aug. 2008.
[18]. Z. D. Schwartz, A. N. Downey, S. A. Alterovitz, and G. E. Ponchak, “High-temperature RF probe station for device characterization through 500°C and 50 GHz”, IEEE Trans. Instrumentation and Measurement, vol. 54, no. 1, pp. 369-376, Feb. 2005.
[19]. M. C. Tang, Y. K. Fang, W. K. Yeh, S. H. Chen, and T. H. Yeh, “Systematic analysis and modeling of on-chip spiral inductors for complementary metal oxide semiconductor radio frequency integrated circuits applications”, Japanese Journal of Applied Physics, vol. 45, no. 4B, pp. 3247-3250, Apr. 2006.
[20]. D. C. Chen, R. Lee, Y. C. Liu, M. C. Tang, G. Chiang, A. Kuo, C S Yeh, S C Chien, and S W Sun, “A novel RF-WAT test structure for advanced process monitoring in SOC applications”, in Proceeding of International Conference on Microelectronic Test Structures (ICMTS), Tokyo (Japan), pp. 243-247, Mar. 2007.
[21]. M. H. Cho, R. Lee, A. S. Peng, D. Chen, C. S. Yeh, and L. K. Wu, “Miniature RF test structure for on-wafer device testing and in-line process monitoring“, IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 462-465, Jan. 2008.
[22]. M. C. Tang, Y. K. Fang, W. K. Yeh, and T. H. Yeh, “Systematic analysis and model of on-chip spiral inductors for CMOS RFIC application”, in proceeding of International Conference on Solid State Devices and Materials (SSDM), Kobe (Japan), pp. 654-655, Sep. 2005.
[23]. M. C. Tang, Y. K. Fang, W. K. Yeh, and R. L. Wang, “Impacts of layout dimensions and ambient temperatures on silicon based on-chip RF interconnects”, in proceeding of International Conference on Solid State Devices and Materials (SSDM), Yokohama (Japan), pp. 498-499, Sep. 2006.
[24]. M. C. Tang, M. F. Wang, T. Cheng, D. Chen, C S Yeh, and S C Chien, “Non-destructive extraction of width bias variation for deep sub-micron interconnect lines”, in proceeding of International Conference on Solid State Devices and Materials (SSDM), Tsukuba (Japan), pp. 398-399, Sep. 2007.
[25]. M. C. Tang, Y. K. Fang, T. Cheng, W. S. Liao, D. C. Chen, C S Yeh, and S C Chien, “Impact of dimension of orthogonal floating shielding lines beneath coplanar waveguide transmission line on suppressing substrate effect”, in proceeding of International Conference on Solid State Devices and Materials (SSDM), Tsukuba (Japan), pp. 396-397, Sep. 2008.
[26]. L. Pantisano, D. Schreurs, B. Kaczer, W. Jeamsaksiri, R. Venegas, R. Degraeve, K. P. Cheung, and G. Groeseneken, “RF performance vulnerability to hot carrier stress and consequent breakdown in low power 90 nm RFCMOS”, in IEDM Tech. Dig., pp. 181-184, Dec. 2003.
[27]. S. Naseh, M. J. Deen, and C. H. Chen, “Effects of hot-carrier stress on the performance of CMOS low-noise amplifiers”, IEEE Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 501-508, Sep. 2005.
[28]. C. Yu, J. S. Yuan, and H. Yang, “MOSFET linearity performance degradation subject to drain and gate voltage stress”, IEEE Trans. Device and Materials Reliability, vol. 4, no. 4, pp. 681-689, Dec. 2004.
[29]. J. P. Walko, and B. Abadeer, “RF S-parameter degradation under hot carrier stress”, in Proceeding of 42th Annual International Reliability Physics Symposium, pp. 422-425, Apr. 2004.
[30]. E. Li, E. Rosenbaum, L. F. Register, J. Tao, and P. Fang, “Hot carrier induced degradation in deep submicron MOSFETs at 100°C”, in Proceeding of 38th Annual International Reliability Physics Symposium, pp. 103-107, Apr. 2000.
[31]. Y. T. Yeow, C. H. Ling, and L. K. Ah, “Observation of MOSFET degradation due to electrical stressing through gate-to-source and gate-to-drain capacitance measurement”, IEEE Electron Device Letter, vol. 12, no. 7, pp. 366-368, Jul. 1991.
[32]. C T Hsu, M M Lau, Y T Yeow, and Z Q Yao, “Analysis of hot-carrier-induced degradation in MOSFETs by gate-to-drain and gate-to-substrate capacitance measurements”, in Proceeding of Proceeding of 38th Annual International Reliability Physics Symposium, pp. 98-102, Apr. 2000.
[33]. C. T. Yao, M. Peckerar, D. Friedman, and H. Hughes, “On the effect of hot-carrier stressing on MOSFET terminal capacitances”, IEEE Trans. Electron Devices, vol. 35, no. 3, pp. 384-386, Mar. 1988.
[34]. C. H. Ling, S. E. Tan, and D. S. Ang, “A study of hot carrier degradation in NMOSEET's by gate capacitance and charge pumping current”, IEEE Trans. Electron Devices, vol. 42, no. 7, pp. 1321-1328, Jul. 1995.
[35]. C. Yu, and J. S. Yuan, “MOS RF reliability subject to dynamic voltage stress-modeling and analysis”, IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1751-1758, Aug. 2005.
[36]. H. L. Kao, A. Chin, C. C. Liao, C. C. Chen, S. P. McAlister, and C. C. Chi, “Electrical-stress effects and device modeling of 0.18-um RF MOSFETs”, IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 636-642, Apr 2006.
[37]. J. W. Ratkovic, R. C. Lacoe, K. P. MacWilliams, M. Song, S. Brown, and G.. Yabiku, “New understanding of LDD CMOS hot-carrier degradation and device lifetime at cryogenic temperatures”, in Proceeding of 35th Annual International Reliability Physics Symposium, pp. 312-319, Apr. 1997.
[38]. E. Li, E. Rosenbaum, J. Tao, and P. Fang, “Projecting lifetime of deep submicron MOSFETs”, IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 671-678, Apr. 2001.
[39]. A. Schwerin, W. Hansch, and W. Weber, “The relationship between Oxide charge and device degradation: A comparative study of n- and p- channel MOSFET's”, IEEE Trans. Electron Devices, vol. 34, no. 12, pp. 2493-2500, Dec. 1987.
[40]. T. Hori, “Gate Dielectrics and MOS ULSIs Principles: Technologies and Applications”, Springer Verlag, Berlin, 1997.
[41]. M. Fakhruddin, M. C. Tang, J. Kuo, J. Karp, D. Chen, C S Yeh, and S C Chien, “Hot carrier degradation and performance of 65nm RF n-MOSFET”, in proceeding of Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu (Hawaii), pp. 551-554, Jun. 2007.
[42]. M. C. Tang, Y. K. Fang, D. Chen, C S Yeh, and S C Chien, “Effects of hot carriers on DC and RF performances of deep submicron PMOSFET for low-power and high-frequency applications”, in proceeding of International Conference on Solid State Devices and Materials (SSDM), Tsukuba (Japan), pp. 436-437, Sep. 2007.
[43]. M. C. Tang, Y. K. Fang, W. S. Liao, D. C. Chen, C. S. Yeh, and S. C. Chien, “Effects of hot carriers on DC and RF performances of deep submicron p-channel metal-oxide-semiconductor field-effect transistors with various oxide layer thicknesses”, Japanese Journal of Applied Physics, vol. 47, no. 4B, pp. 2633-2635, Apr. 2008.
[44]. M. C. Tang, Y. K. Fang, S. C. Wei, D. C. Chen, C. S. Yeh, and S. Huang-Lu, “Effect of hot carrier stress on RF reliability of 40-nm PMOSFETs with and without SiGe source/drain”, Journal of Physics D: Applied Physics, vol. 41, 225107, Nov. 2008.
[45]. M. C. Tang, Y. K. Fang, D. C. Chen, and C. S. Yeh, “Hot carrier and Fowler-Nordheim (FN) tunneling stresses on RF reliability of 40-nm PMOSFETs with and without SiGe source/drain”, IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 541-545, Apr. 2009.
[46]. K. Harazaki, Y. Hasegawa, Y. Shichijo, H. Tabuchi, and K. Fujii, “High accurate optical proximity correction under the influences of lens aberration in 0.15 μm logic process”, in proceeding of International Microprocesses and Nanotechnology Conference, pp. 11-13, Jul. 2000.
[47]. M. Aoyagi, H. Nakagawa, H. Sato, and H. Akoh, “Precise patterning technique for Nb junctions using optical proximity correction”, IEEE Trans. on Applied Superconductivity, vol. 11, no. 3, pp. 381-384, Mar. 2001.
[48]. K. Yamada, N. Okada, M. Yasuda, and N. Oda, “Accurate modeling method for deep sub-micron Cu interconnect,” in VLSI Symp. Tech. Dig., pp. 111-112, Jun. 2003.
[49]. D. Sylvester, and C. Wu, “Analytical modeling and characterization of deep-submicrometer interconnect”, Proceedings of the IEEE, vol. 89, no. 5, pp. 634-664, May. 2001.
[50]. X. C. Li, J. F. Mao, H. F. Huang, and Y. Liu, “Global interconnect width and spacing optimization for latency, bandwidth and power dissipation”, IEEE Trans. on Electron Devices, vol. 52, no. 10, pp. 2272-2279, Oct. 2005.
[51]. T. Kunikiyo, et al., “Non-destructive inverse modeling of copper interconnect structure for 90nm technology node”, Proceeding of International Conference on Simulation of Semiconductor Processed and Devices (SSPAD), pp. 31-34, Sep. 2003.
[52]. T. Kunikiyo, T. Watanabe, T. Kanamoto, H. Asazato, M. Shirota, K. Eikyu, Y. Ajioka, H. Makino, K. Ishikawa, S. Iwade, and Y. Inoue, “Test structure measuring inter- and intralayer coupling capacitance of interconnection with subfemtofarad resolution”, IEEE Trans. on Electron Devices, vol. 51, no. 5, pp. 726-735, May. 2004.
[53]. D. Sylvester, J. C. Chen, and C. Hu, “Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation”, IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 449-453, Mar. 1998.
[54]. A. Brambilla, P. Maffezzoni, L. Bortesi, and L. Vendrame, “Measurements and extractions of parasitic capacitances in ULSI layouts”, IEEE Trans. on Electron Devices, vol. 50, no. 11, pp. 2236-2247, Nov. 2003.
[55]. J. Santander, M. Lozano, A. Collado, M. Ullan, and E. Cabruja, “Accurate contact resistivity extraction on Kelvin structures with upper and lower resistive layers”, IEEE Trans. on Electron Devices, vol. 47, no. 7, pp. 1431-1439, Jul. 2005.
[56]. L. Besser, and R. Gilmore, “Practical RF circuit design for modern wireless system Vol. I, II, ” Artech House INC., Norwood, MA, 2003.
[57]. J. Aguilera and R. Berenguer, “Design and test of integrated inductors for RF applications” Kluwer Academic Publishers, Boston, 2003.
[58]. A. Niknejad, and R. Meyer, “Design, simulation and applications of inductors and transformers for Si RF ICs,”Kluwer Academic Publishers, Boston, 2000.
[59]. J. R. Long, and M. A. Copeland, “The modeling, characterization, and design of monolithic inductors for silicon RF IC's”, IEEE Journal of Solid-State Circuits, vol. 32, no. 3, pp. 357-369, Mar. 1997.
[60]. C. P. Yue, and S. S. Wong, “Physical modeling of spiral inductors on silicon”, IEEE Trans. Electron Devices, vol. 47, no. 3, pp. 560-568, Mar. 2000.
[61]. Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and Systems I, vol. 47, no. 8, pp. 699-713, Aug. 2000.
[62]. C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” in IEDM Tech. Dig., pp. 155-158, Dec., 1996.
[63]. C. P. Yue, and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May. 1998.
[64]. E. Vandamme, D. Schreurs, and C. Dinther, “ Improved three-step de-embedding method to accurately account for the influence of pad parasitics in Silicon on-wafer test-structure,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 737-742, Apr. 2001.
[65]. H. Sagkol, S. Sinaga, J. N. Burghartz, B. Rejaei, and A. Akhnoukh, “Thermal effects in suspended RF spiral inductors,” IEEE Electron Device Letter, vol. 26, no. 8, pp. 541-543, Aug. 2005.
[66]. R. Groves, D. L. Harame, and D. Jadus, “Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology,” IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp.1455-1459, Sep. 1997.
[67]. W. R. Eisenstadt, and Y. Eo, “S-parameter-based IC interconnect transmission line characterization”, IEEE Trans. Component, Hybrids, and Manufacturing Technology, vol. 15, no. 4, pp. 483-490, Aug. 1992.
[68]. Y. Eo, and W. R. Eisenstadt, “High-speed VLSI interconnect modeling based on S-parameter measurements”, IEEE Trans. Component, Hybrids, and Manufacturing Technology, vol. 16, no. 5, pp. 555-562, Aug. 1993.
[69]. T. Kim, X. Li, and D. J. Allstot, “Compact model generation for on-chip transmission lines”, IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 51, no. 3, pp. 459-470, Mar. 2004.
[70]. J. K. Wee, Y. J. Park, H. S. Min, D. H. Cho, M. H. Seung, and H. S. Park, “Modeling the substrate effect in interconnect line characteristics of high-speed VLSI circuits”, IEEE Trans. Microwave Theory and Techniques, vol. 46, no. 10, pp. 1436-1443, Oct. 2004.
[71]. A. M. Mangan, S. P. Voinigescu, M. T. Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs”, IEEE Trans. on Electron Devices, vol. 53, no. 2, pp. 235-241, Feb. 2006.
[72]. T. S. D. Cheung, and J. R. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits”, IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp.1183-1200, May. 2006.
[73]. L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, “Low-loss patterned ground shield interconnect transmission lines in advanced IC processes”, IEEE Trans. Microwave Theory and Techniques, vol. 55, no.3, pp. 561-570, Mar. 2007.
[74]. A. M. E. Safwat, and L. Hayden, “Sensitivity analysis of calibration standards for SOLT and LRRM”, 58th ARFTG Conference Digest - Fall, pp. 1-10, Nov. 2001.
[75]. J. Schmitz, F. N. Cubaynes, R. J. Havens, R. de Kort, A. J. Scholten, and L. F. Tiemeijer, “Test structure design considerations for RF-CV measurements on leaky dielectrics”, IEEE Trans. Semiconductor Manufacturing, vol. 17, no. 2, pp. 150-154, May. 2004.
[76]. G. T. Sasse, R. de Kort, and J. Schmitz, “Gate-capacitance extraction from RF C-V measurements”, Proceeding of the 34th European Solid-State Device Research Conference ESSDERC, pp. 113-116, Sep. 2004.
[77]. I. Kwon, M. Je, K. Lee, and H. Shin, “A simple and analytical parameter-extraction method of a microwave MOSFET”, IEEE Trans. Microwave Theory and Techniques, vol.50, no.6, pp. 1503-1509, Jun. 2002.
[78]. Y. S. Jean, and C. Y. Wu, “The threshold-voltage model of MOSFET devices with localized interface charge”, IEEE Trans. Electron Devices, vol. 44, no. 3, pp. 441-447, Mar. 1997.
[79]. J. L. Tsai, K. Y. Huang, J. H. Lai, J. Gong, F. J. Yang, and S. Y. Lin, “The study of threshold voltage extraction of nitride spacer NMOS transistors in early stage hot carrier stress”, IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1488-1490, Aug. 2002.
[80]. K. Y. Huang, C. S. Ho, M. Tang, and J. J. Liou, “An analytical threshold voltage model of NMOSFETs with hot-carrier induced interface charge effect”, in proceeding of International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur (Malaysia), pp. 601-605, Dec. 2004.
[81]. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” in IEDM Tech. Dig., pp. 978-980, Dec. 2003.
[82]. K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, T. Hoffmann, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying forever: uniaxial strained silicon transistors in a 90nm CMOS technology,” in VLSI Symp. Tech. Dig., pp. 50-51, Jun. 2004.
[83]. C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia, Y. M. Sheu, W. T. Lu, W. M. Chen, and S. S. Lin, “Investigation and localization of the SiGe source/drain (S/D) strain-induced defects in PMOSFET with 45-nm CMOS technology,” IEEE Electron Device Letter, vol. 28, no. 5, pp. 408-411, May. 2007.
[84]. C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia, W. M. Chen, S. S. Lin, and C. S. Hou, “Impact of the strained SiGe source/drain on hot carrier reliability for 45 nm p-type metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 92, no. 13, pp. 133504-133506, Apr. 2008.
[85]. S. S. Chung, D. C. Huang, Y. J. Tsai, C. S. Lai, C. H. Tsai, P. W. Liu, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “New observations on the uniaxial and biaxial strain-induced hot carrier and NBTI reliabilities for 65nm node CMOS devices and beyond,” in IEDM Tech. Dig., pp. 1-4, Dec. 2006.
[86]. P. Su, and J. J. Y. Kuo, “On the enhanced impact ionization in uniaxial strained p-MOSFETs,” IEEE Electron Device Letter, vol. 28, no. 7, pp. 649-651, Jul. 2007.