簡易檢索 / 詳目顯示

研究生: 黃程獻
Huang, Cheng-hsien
論文名稱: 在適地性服務環境下探勘具有時間特性之循序移動樣式
Mining Temporal Mobile Sequential Patterns in Location-Based Service Environments
指導教授: 曾新穆
Tseng, Vincent S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 63
中文關鍵詞: 資料探勘具有時間特性之循序移動樣式適地性服務
外文關鍵詞: Location-based services, Data mining, Temporal mobile sequential patterns
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於適地性服務的概念廣泛的應用,因此引發出許多相關的研究,其中,一個重要的研究議題是預測使用者的行為。在本論文中,我們提出一個新的資料探勘的演算法TMSP-Mine,針對在適地性服務的環境下的使用者,有效率的找出具有時間特性之循序移動樣式。在研究中,我們所提出的方法是第一個同時考慮移動路徑與時間區段的循序樣式。此外,利用TMSP-Mine找出的樣式,可以用來預測使用者接下來會到達的位置以及使用者的行為,以提供使用者更好的服務。最後,我們做的一系列的實驗,評估我們的方法在不同的參數下的執行的效率。

    In recent years, a number of studies have been done on Location-Based Service (LBS) due to the wide applications. One important research issue is the tracking and prediction of users’ mobile behavior. In this paper, we propose a novel data mining algorithm named TMSP-Mine for efficiently discovering the Temporal Mobile Sequential Patterns (TMSPs) of users in LBS environments. To our best knowledge, this is the first work on mining the mobile sequential patterns associated with moving paths and time intervals in LBS environments. Furthermore, we propose novel location prediction strategies that utilize the discovered TMSPs to effectively predict the next movement of mobile users. Finally, we conducted a series of experiments to evaluate the performance of the proposed method under different system conditions by varying various parameters.

    英文摘要 III 中文摘要 IV 表目錄 IX 圖目錄 X 第一章 導論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 問題描述 3 1.4 研究貢獻 4 1.5 論文架構 5 第二章 文獻探討 6 2.1 行動環境架構與服務 6 2.2 與時間切割相關研究 7 2.3 資料探勘方法 11 2.3.1 關聯式規則探勘法(Association Rule Mining) 11 2.3.2 序列型樣探勘法(Sequential Patterns Mining) 12 2.3.3 循序行動存取樣式(Sequential Mobile Access Patterns Mining) 17 第三章 研究方法 20 3.1 方法架構 20 3.2 資料預備 21 3.3 決定時間區段方法 22 3.4 時間切割方法 24 3.5 探勘方法 27 3.5.1 產生大交易(Large Transaction Generation) 27 3.5.2 大交易集轉換(Large Transaction Transformation) 29 3.5.3 產生具有時間特性之行動循序樣式(Temporal Mobile Sequential Pattern generation) 31 第四章 實驗分析 37 4.1 行動交易資料的模擬 37 4.2 實驗規劃 39 4.3 時間區段切割實驗 41 4.3.1 時段個數相關實驗 41 4.3.2 基因演算法相關實驗 42 4.3.3 基因演算法與時段切割相關實驗 44 4.4 探勘實驗 46 4.4.1 最小支持度實驗 46 4.4.2 在不同最小支持度下演算法執行效率 48 4.5 行動環境實驗 50 4.5.1 行動網路大小實驗 50 4.5.2 資料筆數實驗 52 4.5.3 事件機率相關實驗 53 4.6 實驗總結 55 第五章 結論 57 5.1 研究結論 57 5.2 未來發展 58 參考文獻 59

    [1]. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rule between Sets of Items in Large Databases. Proceedings of the ACM SIGMOD Conference on Management of Data, pages 207-216, Washington, D.C., May 1993
    [2]. R. Agrawal and R.Srikant. Fast Algorithms for Mining Association Rules, Proceeding of the 20th Very Large Data Bases, pages 487-499, Santiago, Chile, 1994
    [3]. R. Agrawal and R. Srikant. Mining Sequential Patterns. Proceedings of International Conference on Data Engineering, pages 3-14, Taipei, Taiwan , March 1995
    [4]. J. L. Chen, Resource Allocation for Cellular Data Services Using Multi agent Schemes, IEEE Trans. On Systems, Man, and Cybernetics, Part B, Vol. 31, No. 6, pages 864-869, 2001.
    [5]. Y. L. Chen ,M. C. Chiang, M. T. Kao. Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications , Vol. 25, No. 3, pages 343–354, October 2003.
    [6]. M. S. Chen, J. Han, and P. Yu. Data Mining: An Overview from Database Perspective. IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pages 866-883, December 1996
    [7]. J. Holland. Adaptation in Natural and artificial system. University of Michigan Press, Ann Arbor, 1975
    [8]. M. Halvey, T. Keane, and B. Smyth. Time-Based Segmentation of Log Data for User Navigation Prediction in Personalization. Proceeding of the International Conference on Web Intelligence, pages 636-640 , France, September 2005
    [9]. M. Halvey, T. Keane, and B. Smyth. Predicting Navigation Patterns on the Mobile-Internet Using Time of the Week. Proceeding. of the 14th international conference on World Wide Web, pages 958-959, Chiba, Japan, May 2005
    [10]. M. Halvey, T. Keane, and B. Smyth. Time Based Patterns in Mobile-Internet Surfing. Proceeding. of the SIGCHI conference on Human Factors in computing systems, pages 31-34 , Montreal, Quebec, Canada, April 2006
    [11]. J. L. Huang, M. S. Chen, and W. C. Peng. Exploring group mobility for replica data allocation in a mobile environment, Proceeding. of the ACM International Conference on Information and Knowledge Management, pages 161-168, New York, June 2003.
    [12]. S. C. Lee, J. Paik, J. Ok, I. Song ,and U. M. Kim. Efficient Mining of User Behaviors by Temporal Mobile Access Patterns. International Journal of Computer Science Security, Vol.7 , No.2, pages 285-291, February 2007.
    [13]. Y. B. Lin. GSM Network Signaling. ACM Mobile Computing and Communication, Vol. 1, No. 2, pages 11-16, 1997.
    [14]. Y. B. Lin. Modeling Techniques for Large-Scale PCS Networks. IEEE communications Magazine, Vol. 35, No. 2,pages 102-107, February 1997.
    [15]. E. Modiano and A. Ephremides. Efficient Algorithms for Performing Packet Broadcasts in a Mesh Network. IEEE/ACM Transaction on Networking, Vol. 4, No. 4, pages 639-648, August 1996
    [16]. J. S. Park, M. S. Chen and P. S. Yu. An Effective Hash Based Algorithm for Mining Association Rules, Proceeding. of the ACM SIGMOD Conference on Management of Data, pages 157-186, May 1995.
    [17]. W. C. Peng and M. S. Chen. Mining User Moving Patterns for Personal Data Allocation in Mobile Computing System. Proceeding of the 2000 International Conference on Parallel Processing, pages 573-580,Toronto,Canada,August 2000
    [18]. W. C. Peng and M. S. Chen. Allocation of Shared Data Based on Mobile User Movement. Proceeding Of the 3th International Conference on Mobile Data Management, pages 105-112, Singapore, January 2000.
    [19]. Y. Saygin and O.Ulusoy. Exploiting Data Mining Techniques for Broadcasting Data in Mobile Computing Environments, IEEE Transaction on Knowledge and Data Engineering, Vol. 14, No. 6,pages 1387-1399, November/December 2002.
    [20]. J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems in E-commerce. Proceeding Of the ACM Conference on Electronic Commerce, pages 158-166, Denver, Co, November 1999
    [21]. R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. Proceeding Of the 5th International Conference on Extending Database Technology, pages 3-17, Avignon, France, March 1996.
    [22]. Vincent S. Tseng and W.C. Lin. Mining Sequential Mobile Access Patterns Efficiently in Mobile Web Systems. Proceeding of International Conference on Advanced Information Networking and Applications, pages 867-871, Taipei, Taiwan, March 2005
    [23]. Vincent S. Tseng, J. C. Chang, and Kawuu W. Lin. Mining and Prediction of Temporal Navigation Patterns For Personalized Services in E-Commerce. Proceeding of the ACM Symposium on Applied Computing, pages 867-871, Dijon, France, April 2006
    [24]. Vincent S. Tseng, Kawuu W. Lin. Efficient Mining and Prediction of User Behavior Patterns in Mobile Web Systems. Information and Software Technology, Vol. 48, No. 6, page 357-369, June 2006
    [25]. Vincent S. M. Tseng and C. F. Chiu. An Efficient Method for Mining Associated Service Patterns in Mobile Web Environments, Proceeding of ACM Symposium on Applied Computing, pages 455-459, Melbourne , Florida, March 2003.
    [26]. U. Varshney, R. J. Vetter, and R. Kalakota. Mobile Commerce: A New Frontier. IEEE Computer, Vol. 33, No. 10, page 32-38, October 2000.
    [27]. J. Veijalainene. Transaction in Mobile Electronic Commerce. Proceeding of International Workshop on Foundations of Models and Languages for Data and Objects, pages 203-227, Dagstuhl Castle, Germany, September 1999.
    [28]. P. H. Wu, W. C. Peng, and M. S. Chen. Mining sequential alarm patterns in a telecommunication database. Proceedings of the VLDB 2001 International Workshop on Databases in Telecommunications, pages 37–51, London, U.K., September 2001
    [29]. C. H. Yun and M. S. Chen. Mining Mobile Sequential Patterns in a Mobile Commerce Environment. IEEE Trans. On Systems, Man, and Cybernetics, Part C, Vol. 37, No. 2, pages 278-295, March 2007
    [30]. Wallet Application [Online].Available: http://www.motorola.com/networkoperators/pdfs/M-Wallet-Brochure.pdf

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE