| 研究生: |
柳仲澤 Leou, Zhong-Ze |
|---|---|
| 論文名稱: |
散熱鰭片模組最佳幾何形狀之設計 An Optimum Design Problem in Estimating the Shape of Heat Sink Modules |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 最佳化 、散熱模組 、拉凡格式法 |
| 外文關鍵詞: | optimum, heat sink modules, Levenberg-Marquardt Method |
| 相關次數: | 點閱:105 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的工程問題通常使用傳統的正算求解物理量,也就是將已知的條件輸入系統模式求解,稱為正算問題(Direct Problem)。但是實際上存在著許多物理量無法藉由量測計算得到,或是可以藉由其他可測量或可計算的資料,反算得到該物理量,這一類的問題我們稱之為反算問題(Inverse Problem)。
反算設計問題也可稱為最佳化設計問題。因反算設計問題的原理是利用目前已知的參數或物理量,對複雜的工程問題作最佳化處理。
因此,本論文以實際的散熱模組,使用商業軟體CFD-ACE+ 來建立複雜物理模型的幾何形狀以及其網格,並再利用CFD-ACE+找出鰭片底面最高溫度,以鰭片底面的最高溫度與最後期望下降溫度差作為基礎,利用反算法中的拉凡格式法(Levenberg-Marquardt Method),針對散熱模組的設計參數進行最佳化預測。然後再利用商用散熱模組,與最佳化的散熱模組進行實驗,最後再利用紅外線熱像儀進行測量,並且與CFD-ACE+ 模擬解得的鰭片厚度表面溫度進行驗證。
經過最佳化後,三組散熱模組均能使鰭片底面最高溫度降低,推論結果可能與表面積及流速有相關,在經過實驗驗證後,也證明了模擬與實際上的結果非常相近。
In many practical engineering applications the direct problem is utilized to solve for its physical quantity by substituting the known parameters to the system. In fact, there are many physical values that can not be obtained through direct measurement or calculation in real engineering. However they can be estimated by using inverse design method based on measuring data. These problems are called inverse problems.
Inverse problems are also called optimum design problems. Because Inverse problems are used known parameter or the physical quantity to carried on optimization for the complex engineering problems.
The present study utilized the actual heat sink modules and the general purpose commercial code CFD-ACE+ to find the maximum temperature at fin base and to design the objective function for the optimization problem. A three-dimensional inverse problem in estimating the design variables for actual heat sink modules is solved by using the Levenberg-Marquardt Method (LMM). Finally the original and optimum heat sink modules are carried on the experimental verification.
Results show that the maximum temperature at fin base can be reduced in the optimum heat sink modules and the measured and calculated temperatures on the fin surface are close enough to verify the present design algorithm and calculations.
1. Ishizuka M., Yokono Y., Biswas D., “Experimental study on the performance of compact heat sink for LSI packages”, Proceedings of the Institution of Mechanical Engineers, Part A-Journal of Power and Energy, Vol.214 , No.5, pp.523-530, 2000.
2. El-Sayed S. A., Mohamed S. M., Abdel-latif A. M., and Abouda A.E., “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Arrays of Different Geometries and Shrouded Fin Array”, Experimental Thermal and Fluid Science, Vol. 26, No. 8, pp. 879-900, 2002.
3. Meinders E. R., and Hanjalic K., “Vortex Structure and Heat transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes”, International Journal of Heat and Fluid Flow, Vol. 20, No. 2, pp.255-267, 1999.
4. Andrea L. V., Stefano G., and Franco G., “Optimum Design of Vertical Rectangular Fin Arrays”, International Journal of Thermal Sciences, Vol. 38, No. 6, pp. 525-529, 1999.
5. Coetzer C.B., Visser J.A., “Compact modeling of forced flow in longitudinal fin heat sinks with tip bypass”, Journal of Electronic Packaging, Vol. 125, No. 3, pp. 319-324, 2003.
6. Maveety J. G., and Jung H. H., “Design of an Optimal Pin-Fin Heat Sink with Air Impingement Cooling”, International Communication on Heat and Mass Transfer, Vol. 27, No. 2, pp. 229-240, 2000.
7. Chang J. Y., Yu C. W., and Webb R. L., “Identification of Minimum Air Flow Design for a Desktop Computer Using CFD Modeling”, Journal of Electronic Packaging, Vol. 123, No. 9, pp. 225-231, 2001.
8. Leung C. W., and Probert S. D., “Heat Exchanger Design: Optimal Thickness (under Natural Convective Conditions) of Vertical Rectangular Fins Protruding Upwards from a Horizontal Rectangular Base”, Applied Energy, Vol. 29, No. 4, pp. 299-306, 1988.
9. Leung C. W. and Probert S. D., “Heat Exchanger Design:Optimal Length of an Array of Uniformly-Spaced Vertical Rectangular Fins Protruding Upwards from a Horizontal Base”, Applied Energy, Vol. 30, No. 1, pp. 29-35, 1988.
10. Bar-Cohen A. and Jelinek M., “Optimum Arrays of Longitudinal Fin in Convective Heat Transfer”, Heat Engineering, Vol. 6, pp. 68-78, 1985.
11. Ken T. and Ishizuka M., “Optimization of Parallel Plate Heatsinks for Forced Convection”, IEEE International Society Conference on Thermal Phenomena, pp. 266-271, 2000.
12. Nowell R. M., Jr., Bhavnani S. H. and Jaeger R. C., “Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 3, pp. 534-539, Sept. 1995.
13. Kondo Y., Behnia M., Nakayama W., and Matsushima H., “Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages”, Journal of Electronic Packaging, Vol. 120, No. 3, pp. 259-266, 1998.
14. Azar K., McLeod R. S. and Caron R. E., “Narrow Channel Heat Sink for Cooling of High Powered Electronic Components”, in Proc. 8th Annual IEEE Semi-Therm Symp., pp. 12-19, 1992.
15. Elshafei, E.A.M., ”Effect of flow bypass on the performance of a shrouded longitudinal fin array“, Applied Thermal Engineering, Vol. 27, No. 13, pp. 2233-2242, 2007.
16. Meinders E. R., Th. H. van der Meer, Hanjalic K., and Lasance C. J. M., “Application of infrared thermography to the evaluation of local convective heat transfer on arrays of cubical protrusions”, International Journal of Heat and Fluid Flow, Vol. 18, No. 1, pp. 152-159, 1997.
17. Launder B. E., and Spalding D. B., “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
18. CFD-ACE+ user’s manual, ESI-CFD Inc. 2005.
19. Marquardt D.M., “An Algorithm for least-Squares Estimation of Nonlinear Parameters”, J. Soc. Indust. Appl. Math., Vol.11, No.2, pp. 431-441, 1963.
20. ASM Aerospace Specification Metals Inc.