簡易檢索 / 詳目顯示

研究生: 蔡坤佑
Tsai, Kun-yu
論文名稱: 以視覺為基礎之步態分析
Vision-Based Gait Analysis
指導教授: 詹寶珠
Chung, Pau-Choo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 步態步態分析
外文關鍵詞: gait, behavior analysis
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來以影像為基礎分析步伐姿態成為一新的研究方向,步伐姿態被認為可以作為一生物特徵來辨識人,或是反映個人身體狀況,然而,大部分有關步態的研究都以辨識人的身份為主,並且未包含異常的步伐情形。另一方面,在居家看護及監控系統上,我們需要行為分析來偵測異常的動作以期系統能做出適宜的反應。
    本論文提出一套以視訊影像分析人類步伐的方法,藉由此方法可有效抓出步態的幾種特性,並依此特性分辨出幾種異常的步伐,並且針對拍攝角度不同的情況下提出了矯正的方式以及當角度太大時的誤差提出了改良的方法。

    Gait, or the style of walking, has recently been a popular topic in vision-based analysis. It is believed that gait is unique to every individual and reflects body conditions. However, current vision-based works about gait are mostly devoted to the application of human recognition, and abnormal walking styles are not included for discussion. On the other hand, behavior analysis in home care system or other surveillance application is needed for detecting unusual events so as to making proper response.
    In this thesis, a vision-based method is proposed to analyze abnormal types of walking. With this analysis, a few abnormal types of walking can be distinguished. And consider the angle of the camera, we find the rectification function and we also improve the problem while the angle is too bigger.

    CONTENTS CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND AND RELATED WORK 4 2.1 SHAPE-BASED METHODS 5 2.1.1 Feature extraction 5 2.1.2 Gait period analysis 7 2.1.3 Classification 8 2.2 CADENCE-BASED METHODS 10 2.2.1 Feature extraction 10 2.2.2 Classification 13 2.3 AR WAVE 14 2.3.1 Background Modeling 16 2.3.2 Silhouette Construction 16 2.3.3 Feature Extraction from Silhouette Images 19 2.3.4 Analysis of gait 20 CHAPTER 3 METHOD 24 3.1 RECTIFICATION 24 3.2 SHAPE FEATURE 30 CHAPTER 4 EXPERIMENTAL RESULTS 36 4.1 RECTIFICATION 37 4.2 SHAPE FEATURE 38 4.3 RESULT 40 CHAPTER 5 CONCLUSION 43 REFERENCES 44

    References

    [1] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, “The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 2, Feb. 2005.

    [2] L. Wang, T. Tan, H. Ning, and W. Hu, “Silhouette Analysis-Based Gait Recognition for Human Identification,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1505-1518, Dec. 2003.

    [3] A. Kale, A.Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-Chowdhury, V. Kruger, and R. Chellappa, “Identification of Humans Using Gait,” IEEE Trans. Image Processing, vol. 13, no. 9, pp. 1163-1173, September. 2004.

    [4] R. Collins, R. Gross, and J. Shi, “Silhouette-Based Human Identification from Body Shape and Gait,” Proc. Int’l Conf. Automatic Face and Gesture Recognition, 2002.

    [5] C. BenAbdelkader, R. Culter, and L. Davis, “Stride and Cadence as a Biometric in Automatic Person Identification and Verification,” 5th International Conference on Automatic Face and Gesture Recognition, 2002.

    [6] Y. Yang and M. Levine, “The Background Primal Sketch: An Approach for Tracking Moving Objects,” Machine Vision and Applications, vol. 5, pp. 17-34, 1992.

    [7] Y. Kuno, T. Watanabe, Y. Shimosakoda, and S. Nakagawa, “Automated Detection of Human for Visual Surveillance System,” Proc. Int’l Conf. Pattern Recognition, pp. 865-869, 1996.

    [8] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms”, IEEE Trans. on Sys., Man &Cybem., SMC-9, pp. 62-66, Jan., 1979

    [9] L. Lee and W. E. L. Grimson, “Gait analysis for recognition and classification,” in Proc. IEEE Conf. Face and Gesture Recognition, 2002, pp.155–161.

    [10] M. P. Murray, A. B. Drought, and R. C. Kory, “Walking patterns of normal men,” J. Bone and Joint Surgery, vol. 46-A, no. 2, pp. 335–360,1964.
    [11] D. Cunado, J. M. Nash, M. S. Nixon, and J. N. Carter, “Gait extractionand description by evidence-gathering,” in Proc. Int. Conf. Audio and Video Based Biometric Person Authentication, 1995, pp. 43–48.

    [12] P. S. Huang, C. J. Harris, and M. S. Nixon, “Recognizing humans by gait via parametric canonical space,” Artif. Intell. Eng., vol. 13, no. 4, pp. 359–366, Oct. 1999.

    [13] R. Cutler, C. Benabdelkader, and L. S. Davis, “Motion based recognition of people in eigengait space,” in Proc. IEEE Conf. Face and Gesture Recognition, 2002, pp. 267–272.

    [14] Bauckhage. C., Tsotsos. J.K. and Bunn, F.E. “Detecting abnormal gait” in Computer and Robot Vision, 2005. pp. 282 – 288

    [15] Dejnabadi. H., Jolles, B.M.and Aminian. K.” A New Approach for Quantitative Analysis of Inter-Joint Coordination During Gait” in Biomedical Engineering, IEEE
    Vol. 55 , pp.755 – 764, Feb. 2008

    [16] Qinyong Ma, Shenkang Wang and Dongdong Nie; Jianfeng Qiu, “Recognizing Humans Based on Gait Moment Image” in Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007. vol.2, pp. 606–610.

    下載圖示 校內:2015-08-27公開
    校外:2015-08-27公開
    QR CODE